首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The compartmentalization of eukaryotic cells is reliant on the fidelity of vesicle-mediated intracellular transport. Vesicles deliver their cargo via membrane fusion, a process requiring membrane tethers, Sec1/Munc18 (SM) proteins, and SNAREs. These components function in concert to ensure that membrane fusion is efficient and accurate, but the mechanisms underlying their cooperative action are still in many respects mysterious. In this brief review, we highlight recent progress toward a more integrative understanding of the vesicle fusion machinery. We focus particular attention on cryo-electron microscopy structures of intact multisubunit tethers in complex with SNAREs or SM proteins, as well as a structure of an SM protein bound to multiple SNAREs. The insights gained from this work emphasize the advantages of studying the fusion machinery intact and in context.  相似文献   

2.
The central organelle within the secretory pathway is the Golgi apparatus, a collection of flattened membranes organized into stacks. The cisternal maturation model of intra-Golgi transport depicts Golgi cisternae that mature from cis to medial to trans by receiving resident proteins, such as glycosylation enzymes via retrograde vesicle-mediated recycling. The conserved oligomeric Golgi (COG) complex, a multi-subunit tethering complex of the complexes associated with tethering containing helical rods family, organizes vesicle targeting during intra-Golgi retrograde transport. The COG complex, both physically and functionally, interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, vesicular coats, and molecular motors. In this report, we will review the current state of the COG interactome and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting, which plays a central role in maintaining glycosylation homeostasis in all eukaryotic cells.  相似文献   

3.
The function of the Golgi has long been recognized to critically depend on vesicular transport from, to, and within its cisternae, involving constant membrane fission and fusion. These processes are mediated by Arf GTPases and coat proteins, and Rabs, tethers and SNARE proteins, respectively. In this article, we describe structural studies of Golgi coats and tethers and their interactions with SNAREs and GTPases as well as insights regarding membrane traffic processes that these have provided.  相似文献   

4.
Phospholipase D has long been implicated in vesicle formation and vesicular transport through the secretory pathway. The Golgi apparatus has been shown to exhibit a plethora of mechanisms of vesicle formation at different stages to accommodate a wide variety of cargo. Phospholipase D has been found on the Golgi apparatus and is regulated by ADP-ribosylation factors which are themselves regulators of vesicle trafficking. Moreover, the product of phospholipase D activity, phosphatidic acid, as well as its degradation product diacylglycerol, have been implicated in vesicle fission and fusion events. Here we summarize recent advances in the understanding of the role of phospholipase D at the Golgi apparatus.  相似文献   

5.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

6.
The secretory and endocytic pathways within higher cells consist of multiple membrane-bound compartments, each with a characteristic composition, through which proteins move on their way to or from the cell surface. Sorting of proteins within this system is achieved by their selective incorporation into budding vesicles and the specific fusion of these with an appropriate target membrane. Cytosolic coat proteins help to select vesicle contents, while fusion is mediated by membrane proteins termed SNAREs present in both vesicles and target membranes. SNAREs are not the sole determinants of target specificity, but they lie at the heart of the fusion process. The complete set of SNAREs is known in yeast, and analysis of their locations, interactions and functions in vivo gives a comprehensive picture of the traffic routes and the ways in which organelles such as the Golgi apparatus are formed. The principles of protein and lipid sorting revealed by this analysis are likely to apply to a wide variety of eukaryotic cells.  相似文献   

7.
A complete set of SNAREs in yeast   总被引:5,自引:1,他引:4  
Trafficking of cargo molecules through the secretory pathway relies on packaging and delivery of membrane vesicles. These vesicles, laden with cargo, carry integral membrane proteins that can determine with which target membrane the vesicle might productively fuse. The membrane fusion process is highly conserved in all eukaryotes and the central components driving membrane fusion events involved in vesicle delivery to target membranes are a set of integral membrane proteins called SNAREs. The yeast Saccharomyces cerevisiae has served as an extremely useful model for characterizing components of membrane fusion through genetics, biochemistry and bioinformatics, and it is now likely that the complete set of SNAREs is at hand. Here, we present the details from the searches for SNAREs, summarize the domain structures of the complete set, review what is known about localization of SNAREs to discrete membranes, and highlight some of the surprises that have come from the search.  相似文献   

8.
SNARE proteins lie at the heart of the membrane fusion events in the secretory and endocytic pathways. Physical interactions between them are thought not only to provide the driving force for bringing membranes together, but also to contribute to the specificity of vesicle targeting. Completion of the yeast genome sequence has allowed the full set of SNAREs to be identified. Characterization of these helps to define the number of distinct compartments and the nature of the transport steps between them, but also shows that SNAREs are by no means the sole determinants of fusion specificity. Evolutionary conservation of SNAREs suggests that despite the differences in scale and morphology, many features of membrane organization are similar in yeast and animal cells. This review summarizes current knowledge of the yeast SNAREs and the picture of the secretory pathway that emerges from such studies.  相似文献   

9.
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.  相似文献   

10.
Vesicular transport in eukaryotic cells is concluded with the consumption of the vesicle at the target membrane. This fusion process relies on Rabs, tethers and SNAREs. Powerful in vitro fusion systems using isolated organelles were crucial to obtain insights into the underlying mechanism of membrane fusion- from the initiation of fusion to lipid bilayer mixing. Among these systems, yeast vacuoles turned out to be particularly useful as they can be manipulated biochemically and genetically. Studies relying on this organelle have revealed insights into the connection of vacuole fusion to endomembrane biogenesis. A number of fusion factors were identified and characterized over the last several years, and placed into the fusion cascade. Within this review, we will present and discuss the current state of our knowledge on vacuole fusion.  相似文献   

11.
Distinct sets of soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are distributed to specific intracellular compartments and catalyze membrane fusion events. Although the central role of these proteins in membrane fusion is established in nonplant systems, little is known about their role in the early secretory pathway of plant cells. Analysis of the Arabidopsis (Arabidopsis thaliana) genome reveals 54 genes encoding SNARE proteins, some of which are expected to be key regulators of membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. To gain insights on the role of SNAREs of the early secretory pathway in plant cells, we have cloned the Arabidopsis v-SNAREs Sec22, Memb11, Bet11, and the t-SNARE Sed5, and analyzed their distribution in plant cells in vivo. By means of live cell imaging, we have determined that these SNAREs localize at the Golgi apparatus. In addition, Sec22 was also distributed at the ER. We have then focused on understanding the function of Sec22 and Memb11 in comparison to the other SNAREs. Overexpression of the v-SNAREs Sec22 and Memb11 but not of the other SNAREs induced collapse of Golgi membrane proteins into the ER, and the secretion of a soluble secretory marker was abrogated by all SNAREs. Our studies suggest that Sec22 and Memb11 are involved in anterograde protein trafficking at the ER-Golgi interface.  相似文献   

12.
Antero- and retrograde cargo transport through the Golgi requires a series of membrane fusion events. Fusion occurs at the cis- and trans-side and along the rims of the Golgi stack. Four functional SNARE complexes have been identified mediating lipid bilayer merger in the Golgi. Their function is tightly controlled by a series of reactions involving vesicle tethering and SM proteins. This network of protein interactions spatially and temporally determines the specificity of transport vesicle targeting and fusion within the Golgi.At steady state, the Golgi maintains its structural and functional organization despite a massive lipid and protein flow. A balanced anterograde and retrograde membrane flow are required to constantly recycle the transport machinery and cargo containers (vesicles). In the absence of efficient recycling, directional net cargo transport would cease and the Golgi would collapse. Thus, transport vesicles constantly leave and enter at both sides of the Golgi stack and bud and fuse along the rims of the cisternae. To maintain the compartmental identity, vesicle fusion occurs in a specific and orchestrated manner. These fusion events are mediated by a cascade of reactions centered around the membrane fusion proteins SNAREs (SNAP receptors) (Söllner et al. 1993b).  相似文献   

13.
Vesicular tethers and SNAREs are two key protein components that govern docking and fusion of intracellular membrane carriers in eukaryotic cells. The conserved oligomeric Golgi (COG) complex has been specifically implicated in the tethering of retrograde intra‐Golgi vesicles. Using yeast two‐hybrid and co‐immunoprecipitation approaches, we show that the COG6 subunit of the COG complex is capable of interacting with a subset of Golgi SNAREs, namely STX5, STX6, GS27 and SNAP29. Interaction with SNAREs is accomplished via the universal SNARE‐binding motif of COG6. Overexpression of COG6, or its depletion from cells, disrupts the integrity of the Golgi complex. Importantly, COG6 protein lacking the SNARE‐binding domain is deficient in Golgi binding, and is not capable of inducing Golgi complex fragmentation when overexpressed. These results indicate that COG6–SNARE interactions are important for both COG6 localization and Golgi integrity .  相似文献   

14.
SNAREs on transport vesicles and target membranes are required for vesicle targeting and fusion. Here we describe a novel yeast protein with a typical SNARE motif but with low overall amino acid homologies to other SNAREs. The protein localized to the endoplasmic reticulum (ER) and was therefore named Use1p (unconventional SNARE in the ER). A temperature-sensitive use1 mutant was generated. use1 mutant cells accumulated the ER forms of carboxypeptidase Y and invertase. More specific assays revealed that use1 mutant cells were defective in retrograde traffic to the ER. This was supported by strong genetic interactions between USE1 and the genes encoding SNAREs in retrograde traffic to the ER. Antibodies directed against Use1p co-immunoprecipitated the SNAREs Ufe1p, myc-Sec20p and Sec22p, which form a SNARE complex required for retrograde traffic from the Golgi to the ER, but neither Bos1p nor Bet1p (members of the SNARE complex in anterograde traffic to the Golgi). Therefore, we conclude that Use1p is a novel SNARE protein that functions in retrograde traffic from the Golgi to the ER.  相似文献   

15.
Exocytosis in yeast requires the assembly of the secretory vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (v-SNARE) Sncp and the plasma membrane t-SNAREs Ssop and Sec9p into a SNARE complex. High-level expression of mutant Snc1 or Sso2 proteins that have a COOH-terminal geranylgeranylation signal instead of a transmembrane domain inhibits exocytosis at a stage after vesicle docking. The mutant SNARE proteins are membrane associated, correctly targeted, assemble into SNARE complexes, and do not interfere with the incorporation of wild-type SNARE proteins into complexes. Mutant SNARE complexes recruit GFP-Sec1p to sites of exocytosis and can be disassembled by the Sec18p ATPase. Heterotrimeric SNARE complexes assembled from both wild-type and mutant SNAREs are present in heterogeneous higher-order complexes containing Sec1p that sediment at greater than 20S. Based on a structural analogy between geranylgeranylated SNAREs and the GPI-HA mutant influenza virus fusion protein, we propose that the mutant SNAREs are fusion proteins unable to catalyze fusion of the distal leaflets of the secretory vesicle and plasma membrane. In support of this model, the inverted cone-shaped lipid lysophosphatidylcholine rescues secretion from SNARE mutant cells.  相似文献   

16.
The mammalian Golgi apparatus consists of individual cisternae that are stacked in a polarized manner to form the compact zones of the Golgi. Several stacks are linked to form a ribbon via dynamic lateral bridges. The determinants required for maintaining the characteristic Golgi structure are incompletely understood. Here, we have characterized p28, a new γ-subfamily member of p24 membrane proteins. p28 localized to endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and cis Golgi and accumulated in the ERGIC upon Brefeldin A treatment, typical for a protein cycling in the early secretory pathway. p28 interacted with a subset of p24 proteins. Its depletion by small interfering RNA (siRNA) led to fragmentation of the Golgi without affecting the overall organization of microtubules but considerably reducing the amount of acetylated tubulin. The distribution of COPI and tethers, including GM130, was not affected. At the ultrastructural level, the Golgi fragments appeared as mini-stacks with apparently unchanged cis - trans topology. Golgi fragmentation did not impair anterograde or retrograde traffic. Fluorescence recovery after photobleaching (FRAP) experiments revealed that silencing p28 prevents protein exchange between Golgi stacks during reassembly after Brefeldin A-induced Golgi breakdown. These results show that the formation of a Golgi ribbon requires the structural membrane protein p28 in addition to previously identified SNAREs, coat proteins and tethers.  相似文献   

17.
SNARE proteins control intracellular membrane fusion through formation of membrane-bridging helix bundles of amphipathic SNARE motifs. Repetitive cycles of membrane fusion likely involve repetitive folding/unfolding of the SNARE motif helical structure. Despite these conformational demands, little is known about conformational regulation of SNAREs by other proteins. Here we demonstrate that hsc70 chaperones stimulate in vitro SNARE complex formation among the ER/Golgi SNAREs syntaxin 5, membrin, rbetl and sec22b, under conditions in which assembly is normally inhibited. Thus, molecular chaperones can render the SNARE motif more competent for assembly. Partially purified hsc70 fractions from brain cytosol had higher specific activities than fully purified hsc70, suggesting the involvement of unidentified cofactors. Using chemical crosslinking of cells followed by immunoprecipitation, we found that hsc70 was associated with ER/Golgi SNAREs in vivo. Consistent with a modulatory role for hsc70 in transport, we found that excess hsc70 specifically inhibited ER-to-Golgi transport in permeabilized cells.  相似文献   

18.
Y Goda  S R Pfeffer 《FASEB journal》1989,3(13):2488-2495
Proteins bound for the cell surface, lysosomes, and secretory storage granules share a common pathway of intracellular transport. After their synthesis and translocation into the endoplasmic reticulum, these proteins traverse the secretory pathway by a series of vesicular transfers. Similarly, nutrient and signaling molecules enter cells by endocytosis, and move through the endocytic pathway by passage from one membrane-bound compartment to another. Little is known about the mechanisms by which proteins are collected into transport vesicles, or how these vesicles form, identify their targets, and subsequently fuse with their target membranes. An important advance toward our understanding these processes has come from the establishment of cell-free systems that reconstitute vesicular transfers in vitro. It is now possible to measure, in vitro, the transport of proteins from the endoplasmic reticulum to the Golgi, between Golgi cisternae, and the formation of transport vesicles en route from the trans Golgi network to the cell surface. Along the endocytic pathway, cell-free systems are available to study clathrin-coated vesicle formation, early endosome fusion, and the fusion of late endosomes with lysosomes. Moreover, the selective movement of receptors between late endosomes and the trans Golgi network has also been reconstituted. The molecular mechanisms of vesicular transport are now amenable to elucidation.  相似文献   

19.
Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

20.
Mammalian cells play a dominant role in the industrial production of biopharmaceutical proteins. However, the productivity of producer cells is often hindered by a bottleneck in the saturated secretory pathway, where a sophisticated mechanism of vesicle trafficking is mediated by numerous proteins and their complexes, among which are the cross‐kingdom conserved SNAREs [soluble NSF (N‐ethylmaleimide‐sensitive factor) receptor]. The SNAREs assemble into complexes by means of four interactive α‐helices and, thus, trigger the fusion of transport vesicles with the respective target membranes. We report that the transgenic expression of exocytic SNAREs, which control the fusion of secretory vesicles to the plasma membrane, differentially impacts the secretory capacity of HEK‐293, HeLa, and CHO‐K1 cells. While other exocytic SNAREs have no effect or a negative effect, SNAP‐23 [synaptosome‐associated protein of 23 kDa] and VAMP8 [vesicle‐associated membrane protein 8] specifically increase the production of recombinant proteins when they are ectopically and stably expressed in mammalian cells. The targeted and effective intervention in the secretory capacity of SNARE proteins is a novel engineering strategy, which could lead to the development of new therapies by increasing the production of biopharmaceutical proteins or by boosting the secretion of cell implants in cell therapy initiatives. Biotechnol. Bioeng. 2011; 108:611–620. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号