首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Homeobox D10 (HoxD10) plays important roles in the differentiation of embryonic cells and progression of breast cancer. Our previous report revealed that insulin-like growth factor binding protein-3 (IGFBP3) was regulated by HoxD10 in gastric cancer cells; however, the functional roles and underlying mechanisms of IGFBP3 in gastric cancer remain unclear. Here, we found that the expression of IGFBP3 were upregulated after ectopic expression of HoxD10 in gastric cancer cells. Chromatin immunoprecipitation assay showed that HoxD10 bound to three potential regions of IGFBP3 promoter. Exogenous HoxD10 significantly enhanced the activity of luciferase reporter containing these binding regions in gastric cancer cells. Further data showed that all of these binding sites had Hox binding element “TTAT”. Immunohistochemical staining results revealed that IGFBP3 expression was significantly downregulated in 86 gastric adenocarcinomas tissues relative to their adjacent non-cancerous tissues (p<0.001). Moreover, IGFBP3 expression was significantly lower in gastric tumor with lymph node metastasis compared with that without lymph node metastasis (p=0.045). Patients with high expression level of IGFBP3 showed favorable 5 year overall survival (p=0.011). Knockdown of IGFBP3 accelerated gastric cancer cell migration and invasion and induced the expression of invasive factors including MMP14, uPA and uPAR. Thus, our data suggest that HoxD10-targeted gene IGFBP3 may suppress gastric cancer cell invasion and favors the survival of gastric cancer patients.  相似文献   

2.
Inactivation of tumour suppressor genes by promoter methylation plays an important role in the initiation and progression of gastric cancer (GC). Transmembrane 106A gene (TMEM106A) encodes a novel protein of previously unknown function. This study analysed the biological functions, epigenetic changes and the clinical significance of TMEM106A in GC. Data from experiments indicate that TMEM106A is a type II membrane protein, which is localized to mitochondria and the plasma membrane. TMEM106A was down‐regulated or silenced by promoter region hypermethylation in GC cell lines, but expressed in normal gastric tissues. Overexpression of TMEM106A suppressed cell growth and induced apoptosis in GC cell lines, and retarded the growth of xenografts in nude mice. These effects were associated with the activation of caspase‐2, caspase‐9, and caspase‐3, cleavage of BID and inactivation of poly (ADP‐ribose) polymerase (PARP). In primary GC samples, loss or reduction of TMEM106A expression was associated with promoter region hypermethylation. TMEM106A was methylated in 88.6% (93/105) of primary GC and 18.1% (2/11) in cancer adjacent normal tissue samples. Further analysis suggested that TMEM106A methylation in primary GCs was significantly correlated with smoking and tumour metastasis. In conclusion, TMEM106A is frequently methylated in human GC. The expression of TMEM106A is regulated by promoter hypermethylation. TMEM106A is a novel functional tumour suppressor in gastric carcinogenesis.  相似文献   

3.
Xiang T  Li L  Yin X  Yuan C  Tan C  Su X  Xiong L  Putti TC  Oberst M  Kelly K  Ren G  Tao Q 《PloS one》2012,7(1):e29783

Background

Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear.

Methodology/Principal Findings

We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90S-expressed cells.

Conclusions/Significance

UCHL1 exerts its tumor suppressive functions by inducing G0/G1cell cycle arrest and apoptosis in breast tumorigenesis, requiring its deubiquitinase activity. Its frequent silencing by promoter CpG methylation may serve as a potential tumor marker for breast cancer.  相似文献   

4.
Chen M  Zhang J  Li N  Qian Z  Zhu M  Li Q  Zheng J  Wang X  Shi G 《PloS one》2011,6(10):e25564
FBP1, fructose-1,6-bisphosphatase-1, a gluconeogenesis regulatory enzyme, catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. The mechanism that it functions to antagonize glycolysis and was epigenetically inactivated through NF-kappaB pathway in gastric cancer has been reported. However, its role in the liver carcinogenesis still remains unknown. Here, we investigated the expression and DNA methylation of FBP1 in primary HCC and colon tumor. FBP1 was lowly expressed in 80% (8/10) human hepatocellular carcinoma, 66.7% (6/9) liver cancer cell lines and 100% (6/6) colon cancer cell lines, but was higher in paired adjacent non-tumor tissues and immortalized normal cell lines, which was well correlated with its promoter methylation status. Methylation was further detected in primary HCCs, gastric and colon tumor tissues, but none or occasionally in paired adjacent non-tumor tissues. Detailed methylation analysis of 29 CpG sites at a 327-bp promoter region by bisulfite genomic sequencing confirmed its methylation. FBP1 silencing could be reversed by chemical demethylation treatment with 5-aza-2'-deoxycytidine (Aza), indicating direct epigenetic silencing. Restoring FBP1 expression in low expressed cells significantly inhibited cell growth and colony formation ability through the induction of G2-M phase cell cycle arrest. Moreover, the observed effects coincided with an increase in reactive oxygen species (ROS) generation. In summary, epigenetic inactivation of FBP1 is also common in human liver and colon cancer. FBP1 appears to be a functional tumor suppressor involved in the liver and colon carcinogenesis.  相似文献   

5.
6.
As one of major epigenetic changes responsible for tumor suppressor gene inactivation in the development of cancer, promoter hypermethylation was proposed as a marker to define novel tumor suppressor genes. In the current study we identified ZIC1 (Zic family member 1, odd-paired Drosophila homolog) as a novel tumor suppressor gene silenced through promoter hypermethylation in gastric cancer, the second leading cause of cancer death worldwide. In all of gastric cancer cells lines examined, ZIC1 expression was downregulated and such downregulation was accompanied with the hypermethylation of ZIC1 promoter. Demethylation treatment with 5-aza-2′-deoxycytidine (Aza) reversed ZIC1 downregulation, highlighting the importance of promoter methylation to ZIC1 downregulation in gastric cancer cells. Notably, ZIC1 expression was significantly downregulated in primary gastric carcinoma tissues in comparison with non-tumor adjacent gastric tissues (p < 0.01). Accordingly, promoter methylation of ZIC1 was frequently detected in primary gastric carcinoma tissues (94.6%, 35/37) but not normal gastric tissues, indicating that promoter hypermethylation mediated ZIC1 downregulation may play an important role in gastric carcinogenesis. Indeed, ectopic expression of ZIC1 led to the growth inhibition of gastric cancer cells through the induction of S-phase cell cycle arrest (p < 0.01). Our results revealed ZIC1 as a novel candidate tumor suppressor gene downregulated through promoter hypermethylation in gastric cancer.  相似文献   

7.
8.
NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.  相似文献   

9.
Death-associated protein (DAP) kinase plays an important role in IFN-gamma, tumor necrosis factor (TNF)-alpha, or Fas-ligand induced apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF ligand family and can induce caspase-dependent apoptosis in cancer cells while sparing most of the normal cells. However, some of the cancer cell lines are insensitive to TRAIL, and such resistance cannot be explained by the dysfunction of TRAIL receptors or their known downstream targets. We reported previously that DAP kinase promoter is frequently methylated in non-small cell lung cancer (NSCLC), and such methylation is associated with a poor clinical outcome. To determine whether DAP kinase promoter methylation contributes to TRAIL resistance in NSCLC cells, we measured DAP kinase promoter methylation and its gene expression status in 11 NSCLC cell lines and correlated the methylation/expression status with the sensitivity of cells to TRAIL. Of the 11 cell lines, 1 had a completely methylated DAP kinase promoter and no detectable DAP kinase expression, 4 exhibited partial promoter methylation and substantially decreased gene expression, and the other 6 cell lines showed no methylation in the promoter and normal DAP kinase expression. Therefore, the amount of DAP kinase expression amount was negatively correlated to its promoter methylation (r = -0.77; P = 0.003). Interestingly, the cell lines without the DAP kinase promoter methylation underwent substantial apoptosis even in the low doses of TRAIL, whereas those with DAP kinase promoter methylation were resistant to the treatment. The resistance to TRAIL was reciprocally correlated to DAP kinase expression in 10 of the 11 cell lines at 10 ng/mL concentration (r = 0.91; P = 0.001). We treated cells resistant to TRAIL with 5-aza-2'-deoxycytidine, a demethylating reagent, and found that these cells expressed DAP kinase and became sensitive to TRAIL. These results suggest that DAP kinase is involved in TRAIL-mediated cell apoptosis and that a demethylating agent may have a role in enhancing TRAIL-mediated apoptosis in some NSCLC cells by reactivation of DAP kinase.  相似文献   

10.
Dickkopf‐related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour‐specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial‐mesenchymal transition (EMT) and down‐regulating stem cell markers. DKK3 inhibited canonical Wnt/β‐catenin signalling through mediating β‐catenin translocation from nucleus to cytoplasm and membrane, along with reduced active‐β‐catenin, further activating non‐canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.  相似文献   

11.
Reprimo (RPRM), a downstream effector of p53-induced cell cycle arrest at G2/M, has been proposed as a putative tumor suppressor gene (TSG) and as a potential biomarker for non-invasive detection of gastric cancer (GC). The aim of this study was to evaluate the epigenetic silencing of RPRM gene by promoter methylation and its tumor suppressor function in GC cell lines. Furthermore, clinical significance of RPRM protein product and its association with p53/p73 tumor suppressor protein family was explored. Epigenetic silencing of RPRM gene by promoter methylation was evaluated in four GC cell lines. Protein expression of RPRM was evaluated in 20 tumor and non-tumor matched cases. The clinical significance of RPRM association with p53/p73 tumor suppressor protein family was assessed in 114 GC cases. Tumor suppressor function was examined through functional assays. RPRM gene expression was negatively correlated with promoter methylation (Spearman rank r = -1; p = 0.042). RPRM overexpression inhibited colony formation and anchorage-independent growth. In clinical samples, RPRM gene protein expression was detected in 75% (15/20) of non-tumor adjacent mucosa, but only in 25% (5/20) of gastric tumor tissues (p = 0.001). Clinicopathological correlations of loss of RPRM expression were significantly associated with invasive stage of GC (stage I to II-IV, p = 0.02) and a positive association between RPRM and p73 gene protein product expression was found (p<0.0001 and kappa value = 0.363). In conclusion, epigenetic silencing of RPRM gene by promoter methylation is associated with loss of RPRM expression. Functional assays suggest that RPRM behaves as a TSG. Loss of expression of RPRM gene protein product is associated with the invasive stage of GC. Positive association between RPRM and p73 expression suggest that other members of the p53 gene family may participate in the regulation of RPRM expression.  相似文献   

12.
13.
14.
15.
16.
目的:探讨G蛋白偶联胆汁酸受体1(G-protein coupled bile acid receptor 1,GPBAR1/TGR5)对胃癌细胞增殖、迁移和侵袭的影响。方法:免疫组织化学染色方法(Immunohistochemistry,IHC)检测胃癌及癌旁组织芯片中TGR5表达情况;qRT-PCR及Western blot检测胃癌细胞系中TGR5表达水平;小干扰RNA处理AGS、MKN-45胃癌细胞后构建TGR5敲减细胞系,慢病毒载体转染胃癌SGC-7901细胞构建TGR5过表达细胞系;CCK-8实验、平板克隆形成实验、裸鼠皮下移植瘤实验检测TGR5对细胞增殖的影响;流式细胞仪检测TGR5对细胞周期及凋亡的影响;Tanswell实验检测TGR5对胃癌细胞迁移及侵袭的影响;Western blot检测上皮间充质转化(Epithelial-mesenchymal transition,EMT)相关分子β-连环蛋白(β-catenin)、锌脂蛋白转录因子(Snail)、E盒结合锌指蛋白(Zinc finger E-box binding homeobox 1,ZEB)1在AGS、MKN-45及SGC-7901胃癌细胞中的表达。结果:TGR5在胃癌及癌旁组织中均有表达,胃癌组织TGR5高表达率(41.0%)显著高于癌旁组织(9.5%),伴肠化生癌旁组织TGR5高表达率(50%)显著高于不伴肠化生的癌旁组织(0%),胃癌组织TGR5表达与肿瘤大小相关。TGR5在正常人胃上皮永生化细胞株GES-1及各胃癌细胞系中均有表达。TGR5表达敲低的AGS和MKN-45细胞增殖能力减弱、凋亡率显著升高、侵袭和迁移能力显著降低。过表达TGR5的SGC-7901细胞增殖能力增强、克隆形成能力提高、凋亡率明显减低、侵袭和迁移能力显著升高。此外,TGR5过表达显著上调了间质细胞标志物β-catenin、Snail、ZEB1的表达水平。结论:TGR5能够增强胃癌细胞增殖及迁移能力,并抑制细胞凋亡。TGR5可能通过EMT途径介导胃癌细胞转移。  相似文献   

17.
14-3-3Sigma is a putative tumor suppressor gene involved in cell cycle regulation and apoptosis following DNA damage. 14-3-3Sigma loss of expression has been reported is several human cancers, including prostate adenocarcinoma and precursor lesions, and promoter hypermethylation has been proposed as the mechanism underlying gene silencing. Here, we investigate the frequency and extent of 14-3-3sigma promoter methylation in benign and cancerous prostate tissues. We examined tumor tissue from 121 patients with prostate carcinoma (PCa), 39 paired high-grade prostatic intraepithelial neoplasias (HGPIN), 29 patients with benign prostate hyperplasia (BPH), as well as four prostate cancer cell lines using quantitative methylation-specific PCR (QMSP). The percentage of methylated alleles (PMA) was calculated and correlated with clinical and pathological parameters. RT-PCR was performed in the cell lines to assess 14-3-3sigma mRNA expression. PCa, HGPIN, BPH, and cancer cell lines showed ubiquitous 14-3-3sigma promoter methylation. However, the PMA of HGPIN was significantly lower than that of PCa or BPH (P < 0.0001), while PCa and BPH did not significantly differ. The PMA did not correlate with any clinicopathological parameter. All prostate cancer cell lines expressed 14-3-3sigmamRNA. 14-3-3Sigma promoter methylation is a frequent event in prostate tissues and cancer cell lines. Furthermore, there is a progressive accumulation of neoplastic cells with 14-3-3sigma methylated alleles from HGPIN to PCa, suggesting a role for this epigenetic event in prostate carcinogenesis. However, other mechanisms besides promoter methylation might be required for effective 14-3-3sigma downregulation.  相似文献   

18.
19.
Down-regulation of RECK, an important metastasis suppressor gene, has been found in human colon cancer. However, the molecular mechanism for this down- regulation and its biological significance are still unclear. In the present study, we investigated whether down-regulation of RECK is caused by epigenetic inactivation via promoter methylation and tested the effect of DNA methyltransferase (DNMT) inhibitor on RECK expression and cell invasion. The mRNA and protein levels of RECK in colon tumor tissues and their normal counterparts were compared. We found that down-regulation of RECK was found in 48% of the twenty five tumors analyzed. MSP analysis demonstrated that methylation of RECK promoter was detected in 44% (11/25) of the tumor tissues and a strong correlation between down-regulation and promoter methylation was found (P = 0.028). Promoter methylation was also found in SW480 and SW620 human colon cancer cell lines. DNA methyltransferase (DNMT) inhibitor 5'-azacytidine reversed promoter methylation, restored RECK expression and suppressed invasion by these two cell lines. Restoration of RECK is critical for 5'-azacytidine-mediated suppression of cell invasion because inhibition of RECK by a specific antibody significantly attenuated the anti-invasive ability of 5'-azacytidine. Taken together, our results suggest that down-regulation of the metastasis suppressor RECK in colon cancer is associated with promoter methylation and that a DNMT inhibitor may restore RECK expression to inhibit cell invasion.  相似文献   

20.
Protease-activated receptors (PARs) are a unique family of G-protein coupled receptors. PAR4, the most recently identified PAR member, was reported to be overexpressed during the progression of colon and prostate cancers. Though PAR4 mRNA was detected in normal stomach, the role of PAR4 in gastric cancer has not been investigated. In this study, differential expression of PAR4 was measured by real-time PCR (n=28) and tissue microarrays (n=74). We showed that PAR4 was located from basal to middle portions of normal gastric mucosa. PAR4 expression was remarkably decreased in gastric cancer tissues as compared with matched noncancerous tissues, especially in positive lymph node or low differentiation cancers. Furthermore, methylation of the PAR4 promoter in cell lines was assessed by treatment with 5-aza-2'-deoxycytidine and genomic bisulfite sequencing. AGS and N87 human gastric cancer cell lines did not express PAR4, as compared to HT-29 human colon cancer cell line with significant PAR4 expression. Treatment with 5-aza-2'-deoxycytidine restored PAR4 expression in AGS and N87 cells, which exhibited significantly more 5-methylcytosines in the PAR4 promoter compared with HT-29 cells. Our results revealed that down-regulation of PAR4 expression occurs frequently in gastric cancers and exhibits association with more aggressive gastric cancer. Interestingly, the loss of PAR4 expression in gastric cancers may result from hypermethylation of the PAR4 promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号