首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《FEBS letters》2014,588(8):1379-1388
Adenosine triphosphate (ATP) plays a fundamental role in cellular communication, with its extracellular accumulation triggering purinergic signaling cascades in a diversity of cell types. While the roles for purinergic signaling in health and disease have been well established, identification and differentiation of the specific mechanisms controlling cellular ATP release is less well understood. Multiple mechanisms have been proposed to regulate ATP release with connexin (Cx) hemichannels and pannexin (Panx) channels receiving major focus. However, segregating the specific roles of Panxs and Cxs in ATP release in a plethora of physiological and pathological contexts has remained enigmatic. This multifaceted problem has arisen from the selectivity of pharmacological inhibitors for Panxs and Cxs, methodological differences in assessing Panx and Cx function and the potential compensation by other isoforms in gene silencing and genetic knockout models. Consequently, there remains a void in the current understanding of specific contributions of Panxs and Cxs in releasing ATP during homeostasis and disease. Differentiating the distinct signaling pathways that regulate these two channels will advance our current knowledge of cellular communication and aid in the development of novel rationally-designed drugs for modulation of Panx and Cx activity, respectively.  相似文献   

2.
《FEBS letters》2014,588(8):1372-1378
Connexin hemichannels are postulated to form a cell permeabilization pore for the uptake of fluorescent dyes and release of cellular ATP. Connexin hemichannel activity is enhanced by low external [Ca2+]o, membrane depolarization, metabolic inhibition, and some disease-causing gain-of-function connexin mutations. This paper briefly reviews the electrophysiological channel conductance, permeability, and pharmacology properties of connexin hemichannels, pannexin 1 channels, and purinergic P2X7 receptor channels as studied in exogenous expression systems including Xenopus oocytes and mammalian cell lines such as HEK293 cells. Overlapping pharmacological inhibitory and channel conductance and permeability profiles makes distinguishing between these channel types sometimes difficult. Selective pharmacology for Cx43 hemichannels (Gap19 peptide), probenecid or FD&C Blue #1 (Brilliant Blue FCF, BB FCF) for Panx1, and A740003, A438079, or oxidized ATP (oATP) for P2X7 channels may be the best way to distinguish between these three cell permeabilizing channel types. Endogenous connexin, pannexin, and P2X7 expression should be considered when performing exogenous cellular expression channel studies. Cell pair electrophysiological assays permit the relative assessment of the connexin hemichannel/gap junction channel ratio not often considered when performing isolated cell hemichannel studies.  相似文献   

3.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1?/? mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1?/? mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

4.
Zhao  Hong-Bo 《BMC cell biology》2016,17(1):16-126
Pannexin (Panx) is a gene family encoding gap junction proteins in vertebrates. So far, three isoforms (Panx1, 2 and 3) have been identified. All of three Panx isoforms express in the cochlea with distinct expression patterns. Panx1 expresses in the cochlea extensively, including the spiral limbus, the organ of Corti, and the cochlear lateral wall, whereas Panx2 and Panx3 restrict to the basal cells of the stria vascularis in the lateral wall and the cochlear bony structure, respectively. However, there is no pannexin expression in auditory sensory hair cells. Recent studies demonstrated that like connexin gap junction gene, Panx1 deficiency causes hearing loss. Panx1 channels dominate ATP release in the cochlea. Deletion of Panx1 abolishes ATP release in the cochlea and reduces endocochlear potential (EP), auditory receptor current/potential, and active cochlear amplification. Panx1 deficiency in the cochlea also activates caspase-3 cell apoptotic pathway leading to cell degeneration. These new findings suggest that pannexins have a critical role in the cochlea in regard to hearing. However, detailed information about pannexin function in the cochlea and Panx mutation induced hearing loss still remain largely undetermined. Further studies are required.  相似文献   

5.
Astrocytes are capable of widespread intercellular communication via propagated increases in intracellular Ca(2+) concentration. We have used patch clamp, dye flux, ATP assay, and Ca(2+) imaging techniques to show that one mechanism for this intercellular Ca(2+) signaling in astrocytes is the release of ATP through connexin channels ("hemichannels") in individual cells. Astrocytes showed low Ca(2+)-activated whole-cell currents consistent with connexin hemichannel currents that were inhibited by the connexin channel inhibitor flufenamic acid (FFA). Astrocytes also showed molecular weight-specific influx and release of dyes, consistent with flux through connexin hemichannels. Transmembrane dye flux evoked by mechanical stimulation was potentiated by low Ca(2+) and was inhibited by FFA and Gd(3+). Mechanical stimulation also evoked release of ATP that was potentiated by low Ca(2+) and inhibited by FFA and Gd(3+). Similar whole-cell currents, transmembrane dye flux, and ATP release were observed in C6 glioma cells expressing connexin43 but were not observed in parent C6 cells. The connexin hemichannel activator quinine evoked ATP release and Ca(2+) signaling in astrocytes and in C6 cells expressing connexin43. The propagation of intercellular Ca(2+) waves in astrocytes was also potentiated by quinine and inhibited by FFA and Gd(3+). Release of ATP through connexin hemichannels represents a novel signaling pathway for intercellular communication in astrocytes and other non-excitable cells.  相似文献   

6.
7.
8.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

9.
Mammalian taste cells of the type II release ATP, an afferent neurotransmitter, by employing unselective ATP-permeable ion channels. The molecular identity of these channels is not known with confidence, although evidence implicates certain channel proteins from the connexin and pannexin families as most likely candidates. Here we carried out the comparative analysis of biophysical features and pharmacological profiles of unselective channels operative in type II cells and recombinant pannexin 1 (Panx1), which was cloned from the taste tissue and heterologously expressed in eukaryotic cells of several lines, including HEK-293, CHO, and neuroblastoma SK-N-SH. Integral currents mediated by Panx1 hemichannels were recorded to elucidate their kinetics characteristics, such as activation and deactivation, voltage dependence, and sensitivity to a variety of blockers, including carbenoxolone, DIDS, and NPPB. It was shown that the heterologous expression of Panx1 in cells of each type induced specific conductance, which exhibited outward rectification and was effectively blockable with carbenoxolone and anionic channel blockers DIDS and NPPB. Panx1 activity was studied at the single channel level as well. As was found, transfection of HEK-293 cells with the plasmid harboring cDNA encoding Panx1 gave rise to single channel current-like events in excised patches that were inhibited by 20 μM carbenoxolone, the relatively specific blocker of Panx1. These carbenoxolone-sensitive channels were peculiar in that single-channel current versus membrane voltage was not linear but exhibited outward rectification. In addition, the open-channel probability strongly increased with membrane voltage. Taken together, the data obtained here and earlier demonstrate clearly that by their biophysical and pharmacological features, ATP-permeable channels operative in type II cells are rather distinct from recombinant Panx1 hemichannels, thus arguing against Panx1 as the main conduit of ATP release in taste cells.  相似文献   

10.
Endothelial cells participate in extracellular ATP release elicited by mechanosensors. To characterize the dynamic interactions between mechanical and chemical factors that modulate ATP secretion by the endothelium, we assessed and compared the mechanisms participating in the spontaneous (basal) and mechanically stimulated secretion using primary cultures of rat mesentery endothelial cells. ATP/metabolites were determined in the cell media prior to (basal) and after cell media displacement or a picospritzer buffer puff used as mechanical stimuli. Mechanical stimulation increased extracellular ATP that peaked within 1 min, and decayed to basal values in 10 min. Interruption of the vesicular transport route consistently blocked the spontaneous ATP secretion. Cells maintained in media lacking external Ca2+ elicited a spontaneous rise of extracellular ATP and adenosine, but failed to elicit a further extracellular ATP secretion following mechanical stimulation. 2-APB, a TRPV agonist, increased the spontaneous ATP secretion, but reduced the mechanical stimulation-induced nucleotide release. Pannexin1 or connexin blockers and gadolinium, a Piezo1 blocker, reduced the mechanically induced ATP release without altering spontaneous nucleotide levels. Moreover, thrombin or related agonists increased extracellular ATP secretion elicited by mechanical stimulation, without modifying spontaneous release. In sum, present results allow inferring that the spontaneous, extracellular nucleotide secretion is essentially mediated by ATP containing vesicles, while the mechanically induced secretion occurs essentially by connexin or pannexin1 hemichannel ATP transport, a finding fully supported by results from Panx1?/? rodents. Only the latter component is modulated by thrombin and related receptor agonists, highlighting a novel endothelium-smooth muscle signaling role of this anticoagulant.  相似文献   

11.
Pannexins are homologous to innexins, the invertebrate gap junction family. However, mammalian pannexin1 does not form canonical gap junctions, instead forming hexameric oligomers in single plasma membranes and intracellularly. Pannexin1 acts as an ATP release channel, whereas less is known about the function of Pannexin2. We purified cellular membranes isolated from MDCK cells stably expressing rat Pannexin1 or Pannexin2 and identified pannexin channels (pannexons) in single membranes by negative stain and immunogold labeling. Protein gel and Western blot analysis confirmed Pannexin1 (Panx1) or Pannexin2 (Panx2) as the channel-forming proteins. We expressed and purified Panx1 and Panx2 using a baculovirus Sf9 expression system and obtained doughnut-like structures similar to those seen previously in purified connexin hemichannels (connexons) and mammalian membranes. Purified pannexons were comparable in size and overall appearance to Connexin46 and Connexin50 connexons. Pannexons and connexons were further analyzed by single-particle averaging for oligomer and pore diameters. The oligomer diameter increased with increasing monomer molecular mass, and we found that the measured oligomeric pore diameter for Panxs was larger than for Connexin26. Panx1 and Panx2 formed active homomeric channels in Xenopus oocytes and in vitro vesicle assays. Cross-linking and native gels of purified homomeric full-length and a C-terminal Panx2 truncation mutant showed a banding pattern more consistent with an octamer. We purified Panx1/Panx2 heteromeric channels and found that they were unstable over time, possibly because Panx1 and Panx2 homomeric pannexons have different monomer sizes and oligomeric symmetry from each other.  相似文献   

12.
Adhesion of circulating monocytes to vascular endothelial cells is a crucial event in development of vascular inflammatory conditions, including atherosclerosis. We investigated the roles of connexin43 (Cx43) and ATP release on monocyte-endothelial adhesion. Cx43 function and expression were manipulated by connexin channel inhibitors, overexpression and siRNA. Connexin channel inhibitors rapidly decreased ATP release from U937 monocytes and increased adhesion to human umbilical vein endothelial cells (HUVEC). Monocyte ATP release correlated with Cx43 expression, not with Cx37 expression. Exogenous adenosine (ADO) or ATP decreased adhesion, and inhibition of ATP conversion to ADO increased adhesion. We infer that monocyte Cx43 channel activity causes ATP release, likely via Cx43-containing hemichannels, and that ATP decreases adhesion via conversion to ADO. Inhibition of HUVEC connexin channel activity did not affect ATP release or adhesion. In contrast, expression of Cx43 protein in U937 cells enhanced adhesion. Thus, Cx43 channel function and expression have opposite effects: Cx43 channel function in monocytes, but not in HUVEC, rapidly decreases adhesion via ATP release and conversion to ADO, whereas Cx43 expression itself enhances adhesion. These studies suggest that local regulation of monocyte Cx43 activity within the vasculature can dynamically modulate the monocyte-endothelial adhesion that is an initiating event in vascular inflammatory pathologies, with the baseline adhesion set by Cx43 expression levels. This balance of rapid and tonic influences may be crucial in development of vascular pathologies.  相似文献   

13.
Although alkaline pH is known to trigger Ca(2+) influx in diverse cells, no pH-sensitive Ca(2+) channel has been identified. Here, we report that extracellular alkalinization induces opening of connexin 43 hemichannels (Cx43 HCs). Increasing extracellular pH from 7.4 to 8.5, in the presence of physiological Ca(2+)/Mg(2+) concentrations, rapidly increased the ethidium uptake rate and open probability of HCs in Cx43 and Cx43EGFP HeLa transfectants (HeLa-Cx3 and HeLa-Cx43EGFP, respectively) but not in parental HeLa cells (HeLa-parental) lacking Cx43 HCs. The increase in ethidium uptake induced by pH 8.5 was not affected by raising the extracellular Ca(2+) concentration from 1.8 to 10 mM but was inhibited by a connexin HC inhibitor (La(3+)). Probenecid, a pannexin HC blocker, had no effect. Extracellular alkalinization increased the intracellular Ca(2+) levels only in cells expressing HCs. The above changes induced by extracellular alkalinization did not change the cellular distribution of Cx43, suggesting that HC activation occurs through a gating mechanism. Experiments on cells expressing a COOH-terminal truncated Cx43 mutant indicated that the effects of alkalinization on intracellular Ca(2+) and ethidium uptake did not depend on the Cx43 C terminus. Moreover, purified dephosphorylated Cx43 HCs reconstituted in liposomes were Ca(2+) permeable, suggesting that Ca(2+) influx through Cx43 HCs could account for the elevation in intracellular Ca(2+) elicited by extracellular alkalinization. These studies identify a membrane pathway for Ca(2+) influx and provide a potential explanation for the activation of cellular events induced by extracellular alkalinization.  相似文献   

14.
ATP-dependent paracrine signaling, mediated via the release of ATP through plasma membrane-embedded hemichannels of the connexin family, coordinates a synchronized response between neighboring cells. Connexin 43 (Cx43) hemichannels that are present in the plasma membrane need to be tightly regulated to ensure cell viability. In monolayers of bovine corneal endothelial cells (BCEC),Cx43-mediated ATP release is strongly inhibited when the cells are treated with inflammatory mediators, in particular thrombin and histamine. In this study we investigated the involvement of RhoA activation in the inhibition of hemichannel-mediated ATP release in BCEC. We found that RhoA activation occurs rapidly and transiently upon thrombin treatment of BCEC. The RhoA activity correlated with the onset of actomyosin contractility that is involved in the inhibition of Cx43 hemichannels. RhoA activation and inhibition of Cx43-hemichannel activity were both prevented by pre-treatment of the cells with C3-toxin as well as knock down of RhoA by siRNA. These findings provide evidence that RhoA activation is a key player in thrombin-induced inhibition of Cx43-hemichannel activity. This study demonstrates that RhoA GTPase activity is involved in the acute inhibition of ATP-dependent paracrine signaling, mediated by Cx43 hemichannels, in response to the inflammatory mediator thrombin. Therefore, RhoA appears to be an important molecular switch that controls Cx43 hemichannel openings and hemichannel-mediated ATP-dependent paracrine intercellular communication under (patho)physiological conditions of stress.  相似文献   

15.
Osteoblasts sense and respond to mechanical stimuli in a process involving influx and release of large ions and signaling molecules. Unapposed gap junction hemichannels formed of connexin43 (Cx43) have been proposed as a major route for such exchange, in particular for release of ATP and prostaglandin E2 (PGE2) in osteocytes. However, we have found that Cx43-null osteoblasts have unaltered, mechanically induced PGE2 release and ATP-induced YoPro dye uptake. In contrast, PGE2 release in response to fluid shear stress is abolished in P2X7 receptor (P2X7R)–null osteoblasts, and ATP-induced dye uptake is attenuated following treatment of wild-type cells with a P2X7R or Pannexin1 (Panx1) channel blocker. These data indicate that Panx1 channels, in concert with P2X7R, likely form a molecular complex that performs the hemichannel function in osteoblast mechanosignaling.  相似文献   

16.
ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 muM. The OGD-induced ATP release was inhibited by Gd(3+) and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl(-) channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X(7) receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd(3+) and arachidonic acid. The channel was found to be permeable to ATP(4-) with a permeability ratio of P(ATP)/P(Cl) = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions.  相似文献   

17.
A large conductance (~300 picosiemens) channel (LCC) of unknown molecular identity, activated by Ca(2+) release from the sarcoplasmic reticulum, particularly when augmented by caffeine, has been described previously in isolated cardiac myocytes. A potential candidate for this channel is pannexin 1 (Panx1), which has been shown to form large ion channels when expressed in Xenopus oocytes and mammalian cells. Panx1 function is implicated in ATP-mediated auto-/paracrine signaling, and a crucial role in several cell death pathways has been suggested. Here, we demonstrate that after culturing for 4 days LCC activity is no longer detected in myocytes but can be rescued by adenoviral gene transfer of Panx1. Endogenous LCCs and those related to expression of Panx1 share key pharmacological properties previously used for identifying and characterizing Panx1 channels. These data demonstrate that Panx1 constitutes the LCC of cardiac myocytes. Sporadic openings of single Panx1 channels in the absence of Ca(2+) release can trigger action potentials, suggesting that Panx1 channels potentially promote arrhythmogenic activities.  相似文献   

18.
The pannexin family of mammalian proteins, composed of Panx1, Panx2, and Panx3, has been postulated to be a new class of single-membrane channels with functional similarities to connexin gap junction proteins. In this study, immunolabeling and coimmunoprecipitation assays revealed that Panx1 can interact with Panx2 and to a lesser extent, with Panx3 in a glycosylation-dependent manner. Panx2 strongly interacts with the core and high-mannose species of Panx1 but not with Panx3. Biotinylation and dye uptake assays indicated that all three pannexins, as well as the N-glycosylation-defective mutants of Panx1 and Panx3, can traffic to the cell surface and form functional single-membrane channels. Interestingly, Panx2, which is also a glycoprotein and seems to only be glycosylated to a high-mannose form, is more abundant in intracellular compartments, except when coexpressed with Panx1, when its cell surface distribution increases by twofold. Functional assays indicated that the combination of Panx1 and Panx2 results in compromised channel function, whereas coexpressing Panx1 and Panx3 does not affect the incidence of dye uptake in 293T cells. Collectively, these results reveal that the functional state and cellular distribution of mouse pannexins are regulated by their glycosylation status and interactions among pannexin family members.  相似文献   

19.
Inflammation contributes to neurodegeneration in post-ischemic brain, diabetes, and Alzheimer's disease. Participants in this inflammatory response include activation of microglia and astrocytes. We studied the role of microglia treated with amyloid-β peptide (Aβ) on hemichannel activity of astrocytes subjected to hypoxia in high glucose. Reoxygenation after 3?h hypoxia in high glucose induced transient astroglial permeabilization via Cx43 hemichannels and reduction in intercellular communication via Cx43 cell-cell channels. Both responses were greater and longer lasting in astrocytes previously exposed for 24 h to conditioned medium from Aβ-treated microglia (CM-Aβ). The effects of CM-Aβ were mimicked by TNF-α and IL-1β and were abrogated by neutralizing TNF-α with soluble receptor and IL-1β with a receptor antagonist. Astrocytes under basal conditions protected neurons against hypoxia, but exposure to CM-Aβ made them toxic to neurons subjected to a sub-lethal hypoxia/reoxygenation episode, revealing the additive nature of the insults. Astrocytes exposed to CM-Aβ induced permeabilization of cortical neurons through activation of neuronal pannexin 1 (Panx1) hemichannels by ATP and glutamate released through astroglial Cx43 hemichannels. In agreement, inhibition of NMDA or P2X receptors only partially reduced the activation of neuronal Panx1 hemichannels and neuronal mortality, but simultaneous inhibition of both receptors completely prevented the neurotoxic response. Therefore, we suggest that responses to ATP and glutamate converge in activation of neuronal Panx1 hemichannels. Thus, we propose that blocking hemichannels expressed by astrocytes and/or neurons in the inflamed nervous system could represent a novel and alternative strategy to reduce neuronal loss in various pathological states including Alzheimer's disease, diabetes and ischemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号