首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵卓凡  黄玲  刘永明  张鹏  魏桂  曹墨菊 《遗传》2018,40(5):402-414
玉米是最早利用细胞质雄性不育系生产杂交种的作物之一,C型细胞质雄性不育系(C-type cytoplasmic male sterile, CMS-C)在杂交种生产中具有重要的作用,育性恢复的稳定性直接影响其应用价值。然而,玉米CMS-C的育性恢复机理复杂,且至今仍不明确。为进一步探究玉米CMS-C育性恢复的影响因素,本研究以玉米CMS-C同质异核不育系C48-2、C黄早四和C478为母本,分别与测验系18白、自330、5022以及恢复系A619组配杂交获得F1。其中育性恢复F1通过自交获得F2,并以育性恢复F1为父本分别给育性保持F1授粉,组配双交群体,共获得4个F2群体,6个双交群体。同时以不育系C48-2、C黄早四和C478为母本,各自的保持系48-2、黄早四和478为父本杂交组配不完全双列杂交F1。将所有杂交组合的F1、F2以及双交组合群体分别在不同年份不同地点种植观察,通过植株田间育性调查并结合室内花粉镜检鉴定育性表现。结果表明:1) 同一测验系对玉米CMS-C同质异核不育系的恢保关系不同,暗示不育系的核背景参与调控育性恢复表现;2) 在不同年份不同地点对(C48-2×A619) F2群体进行种植观察,发现不同环境下F2群体可育株与不育株的分离比均符合15∶1,但在云南种植的可育株的育性级别主要为Ⅲ和Ⅳ级,而在四川种植的可育株的育性级别主要为Ⅴ级,表明环境对恢复系A619恢复后代的育性表现有影响;3) 通过恢保关系测定发现18白不能恢复C478,48-2也不能恢复C478,但双交群体[(C478×18白) F1S×(C48-2×18白) F1F]后代却出现了可育株与不育株的分离;同理,双交群体[(C48-2×自330) F1S×(C478×自330) F1F]的后代也出现了可育株与不育株的分离。因此,本文推测C48-2、C478核背景中存在微效恢复基因,这些微效基因与18白、自330中的微效恢复基因通过杂交聚合后能使C478、C48-2的育性恢复,暗示玉米CMS-C的育性恢复呈现一定的剂量效应。这些结果为进一步认识玉米CMS-C育性恢复的复杂性和多样性奠定了基础,为深入研究玉米CMS-C育性恢复机理以及加快CMS-C在不育化制种中的应用提供重要参考。  相似文献   

2.
为研究雄性不育相关基因TA1和TA2在BNS和YS小麦温敏雄性不育系732A花粉发育时期的表达特点,探讨这2个育性相关基因与温敏雄性不育小麦育性转换的联系,本研究利用荧光实时定量PCR方法,在BNS和YS型不育系732A花药发育四分体期、单核期、二核期和三核期定量检测基因TA1和TA2的mRNA表达水平。结果表明:(1)在732A和BNS花粉发育四分体时期至二核期,基因TA1相对表达量上调,在三核期相对表达量下降;(2)基因TA2相对表达量在BNS花粉发育的四分体时期至二核期逐渐下降,三核期上升;在732A花粉发育4个时期中的相对表达量变化刚好相反;(3)在BNS和732A花粉发育二核期,基因TA1和TA2均表现极值,推测二核期可能为BNS和YS型小麦温敏雄性不育系花粉发育最敏感时期;(4)在不育系BNS和732A花粉发育过程中,基因TA1的相对表达量变化幅度比TA2的高。推测TA1对不育系BNS和732A花粉败育影响程度强于TA2;(5)基因TA1和TA2相对表达量在BNS的花粉发育时期表达趋势相反,推测其对BNS花粉败育影响表现为拮抗作用,且2个基因不连锁;在732A花粉发育时期表达趋势相同,推测其对不育系732A花粉败育影响表现为协同作用。  相似文献   

3.
We have sequenced five distinct mitochondrial genomes in maize: two fertile cytotypes (NA and the previously reported NB) and three cytoplasmic-male-sterile cytotypes (CMS-C, CMS-S, and CMS-T). Their genome sizes range from 535,825 bp in CMS-T to 739,719 bp in CMS-C. Large duplications (0.5-120 kb) account for most of the size increases. Plastid DNA accounts for 2.3-4.6% of each mitochondrial genome. The genomes share a minimum set of 51 genes for 33 conserved proteins, three ribosomal RNAs, and 15 transfer RNAs. Numbers of duplicate genes and plastid-derived tRNAs vary among cytotypes. A high level of sequence conservation exists both within and outside of genes (1.65-7.04 substitutions/10 kb in pairwise comparisons). However, sequence losses and gains are common: integrated plastid and plasmid sequences, as well as noncoding "native" mitochondrial sequences, can be lost with no phenotypic consequence. The organization of the different maize mitochondrial genomes varies dramatically; even between the two fertile cytotypes, there are 16 rearrangements. Comparing the finished shotgun sequences of multiple mitochondrial genomes from the same species suggests which genes and open reading frames are potentially functional, including which chimeric ORFs are candidate genes for cytoplasmic male sterility. This method identified the known CMS-associated ORFs in CMS-S and CMS-T, but not in CMS-C.  相似文献   

4.
Pollen formation is a complex process that is strictly controlled by genetic factors. Although many novel mitochondrial genes have been implicated in the dysfunction of mitochondrial enzymes and the cytoplasmic male sterility (CMS), there is little empirical evidence to show that CMS-related genes actually result in the dysfunction of enzyme and little is known about the regulatory mechanisms of the aberrant mitochondrial enzymes in male sterility in CMS lines. Here, we report the characterization of a novel mitochondrial gene, Ψatp6-2, which is hypothesized to play a role in male sterility in pepper. Using virus-induced gene silencing (VIGS), we observed that silencing the atp6-2 gene in the maintainer line resulted in an increase in ATP hydrolysis activity of the mitochondrial F1Fo-ATP synthase along with pollen abortion, while silencing the truncated Ψatp6-2 gene in the CMS line resulted in an inhibition of ATP hydrolysis activity and restoration of fertility. Altered ATP hydrolysis also affected the tolerance of the gene-silenced plants to abiotic stresses. Localization experiments showed that premature ATP hydrolysis occurred at the tetrad stage of pollen development in the CMS line, but no ATPase activity was observed in the microspores at the later stage. These results suggest that the Ψatp6-2 gene causes the alteration in ATP hydrolysis activity of the mitochondrial F1Fo-ATP synthase during pollen development, which eventually leads to male sterility in pepper.  相似文献   

5.
6.
7.
8.
9.
Rice crops are vulnerable to low temperatures. During development, the reproductive stage is particularly sensitive to cold exposure, which causes abnormal pollen development and a high degree of male sterility. In this study, shotgun proteomic analysis was used to analyze rice anthers containing pollen grains from a cold-tolerant variety, Dianxi 4. Protein expression was compared between normal anthers and anthers exposed to cold temperatures at the young microspore stage. In total, 3835 non-redundant proteins were identified in the rice anther. Of these, 441 proteins were differentially expressed between normal and cold-treated anthers. Pollen allergens, ATP synthase, actin, profilin, and β-expansin proteins were highly abundant, reflecting anther development, pollen germination, and pollen tube elongation. Starch and sucrose metabolic proteins such as α-amylase precursor and 4-α-glucanotransferase exhibited reduced expression after cold exposure. Among the proteins that exhibited increased expression after cold exposure, C2 domain proteins, and GRPs were identified as candidate signaling factors for mediation of the cold tolerance response. Through high-throughput proteomic analysis we were able to reveal proteomic changes against cold stress and suggest two signaling factors as the candidate genes.  相似文献   

10.
11.
棉花细胞核雄性不育两用系差异表达基因分析   总被引:2,自引:0,他引:2  
应用cDNA-AFLP对棉花ms5ms6双隐性核雄性不育两用系的不育株和可育株花粉发育的3个时期—造孢细胞时期、花粉母细胞时期和花粉粒时期进行对比分析,共得到17个差异表达片段,它们分别属于11种表达模式,其中14个片段可以在NCBI数据库中找到同源序列,功能分析表明这些片段所编码的基因可能参与了信号转导、转录、能量代谢、细胞壁发育等相关过程。Northern杂交结果证明检测片段的表达模式与cDNA-AFLP结果吻合。同时还在可育花药中发现了与玉米T型细胞质雄性不育恢复因子RF2基因高度同源的育性恢复因子类基因。  相似文献   

12.
13.
14.
水稻(Oryza sativa)隐性核雄性不育突变体是第三代杂交水稻技术的核心。为了挖掘优质雄性不育突变体, 该研究通过筛选优质籼稻黄华占(HHZ)的甲基磺酸乙酯(EMS)诱变突变体库, 获得1个雄性不育突变体ms102 (male sterility mutant 102)。该突变体营养生长正常, 但花药不开裂, 花粉败育。细胞学分析表明, 突变体花药绒毡层不能正常降解, 导致小孢子发育异常; 遗传分析表明, 该突变体的不育表型由1个已报道编码酰基转移酶的DPW2基因突变造成。研究获得了1个隐性核雄性不育突变体, 进一步证实了DPW2基因在水稻花药发育中的功能。  相似文献   

15.
16.
The partial pollen abortion of hybrids between the indica and japonica subspecies of Asian cultivated rice is one of the major barriers in utilizing intersubspecific heterosis in hybrid rice breeding. Although a single hybrid pollen sterility locus may have little impact on spikelet fertility, the cumulative effect of several loci usually leads to a serious decrease in spikelet fertility. Isolating of the genes conferring hybrid pollen sterility is necessary to understand this phenomenon and to overcome the resulting genetic barrier. In this study, a new locus for F1 pollen sterility, S-d, was identified on the short arm of chromosome 1 by analyzing the genetic effect of substituted segments of the near-isogenic line E11-5 derived from the japonica variety Taichung 65 (recurrent parent) and the indica variety Dee-geo-woo-gen (donor parent). The S-d locus was first mapped to a 0.8 cM interval between SSR markers PSM46 and PSM80 using a F2 population of 125 individuals. The flanking markers were then used to identify recombinants from a population of 2,160 plants derived from heterozygotes of the primary F2 population. Simultaneously, additional markers were developed from genomic sequence divergence in this region. Analysis of the recombinants in the region resulted in the successful mapping of the S-d locus to a 67-kb fragment, containing 17 predicted genes. Positional cloning of this gene will contribute to our understanding of the molecular basis for partial pollen sterility of intersubspecific F1 hybrids in rice.  相似文献   

17.
18.
Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described.  相似文献   

19.
20.
Thermosensitive genic male sterility (TGMS) has been widely used in two-line hybrid rice breeding. Due to hybrid seed production being highly affected by changeable environments, its application scope is limited to some extent. Thus, it is of great importance to identify potential TGMS genes in specific rice varieties. Here, Diannong S-1 xuan (DNS-1X), a reverse TGMS (RTGMS) japonica male sterile line, was identified from Diannong S-1. Genetic analysis showed that male sterility was tightly controlled by a single recessive gene, which was supported by the phenotype of the F1 and F2:3 populations derived from the cross between DNS-1X and Yunjing 26 (YJ26). Combining simple sequence repeat (SSR) markers and bulked segregation analysis (BSA), we identified a 215 kb region on chromosome 10 as a candidate reverse TGMS region, which was designated as rtms1-D. It was narrower than the previously reported RTGMS genes rtms1 and tms6(t). The fertility conversion detected in the natural environment showed that DNS-1X was sterile below 28–30 °C; otherwise, it was fertile. Histological analysis further indicated that the pollen abortion was occurred in the young microspore stage. This study will provide new resources for two-line hybrid rice and pave the way for molecular breeding of RTGMS lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号