首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cel5A is a highly active endoglucanase from Thermoanaerobacter tengcongensis MB4, displaying an optimal temperature range between 75 and 80 °C. After three rounds of error-prone PCR and screening of 4700 mutants, five variants of Cel5A with improved activities were identified by Congo Red based screening method. Compared with the wild type, the best variants 3F6 and C3-13 display 135 ± 6% and 193 ± 8% of the wild type specific activity for the substrate carboxymethyl cellulose (CMC), besides improvements in the relative expression level in Escherichia coli system. Remarkable are especially the improvements in activities at reduced temperatures (50% of maximum activity at 50 °C and about 45 °C respectively, while 65 °C for the wild type). Molecular Dynamics simulations performed on the 3F6 and C3-13 variants show a decreased number of intra-Cel5A hydrogen bonds compared to the wild type, implying a more flexible protein skeleton which correlates well to the higher catalytic activity at lower temperatures. To investigate functions of each individual amino acid position site-directed (saturation) mutagenesis were generated and screened. Amino acid positions Val249 and Ile321 were found to be crucial for improving activity and residue Ile13 (encoded by rare codon AUA) yields an improved expression level in E. coli.  相似文献   

2.
3.
Directed evolution of a fungal peroxidase   总被引:9,自引:0,他引:9  
The Coprinus cinereus (CiP) heme peroxidase was subjected to multiple rounds of directed evolution in an effort to produce a mutant suitable for use as a dye-transfer inhibitor in laundry detergent. The wild-type peroxidase is rapidly inactivated under laundry conditions due to the high pH (10.5), high temperature (50 degrees C), and high peroxide concentration (5-10 mM). Peroxidase mutants were initially generated using two parallel approaches: site-directed mutagenesis based on structure-function considerations, and error-prone PCR to create random mutations. Mutants were expressed in Saccharomyces cerevisiae and screened for improved stability by measuring residual activity after incubation under conditions mimicking those in a washing machine. Manually combining mutations from the site-directed and random approaches led to a mutant with 110 times the thermal stability and 2.8 times the oxidative stability of wild-type CiP. In the final two rounds, mutants were randomly recombined by using the efficient yeast homologous recombination system to shuffle point mutations among a large number of parents. This in vivo shuffling led to the most dramatic improvements in oxidative stability, yielding a mutant with 174 times the thermal stability and 100 times the oxidative stability of wild-type CiP.  相似文献   

4.
Chitinases have potential in various industrial applications including bioconversion of chitin waste from crustacean shells into chito-oligosaccharide-based value-added products. For industrial applications, obtaining suitable chitinases for efficient bioconversion processes will be beneficial. In this study, we established a straightforward directed evolution method for creating chitinase variants with improved properties. A library of mutant chitinases was constructed by error-prone PCR and DNA shuffling of two highly similar (99% identical) chitinase genes from Bacillus licheniformis. Activity screening was done in two steps: first, activity towards colloidal chitin was screened for on culturing plates (halo formation). This was followed by screening activity towards the chitotriose analogue p-nitrophenyl-β-1,4-N, N'-diacetyl-chitobiose at various pH in microtiter plates. From a medium-throughput screening (517 colonies), we were able to isolate one mutant that demonstrated improved catalytic activity. When using p-nitrophenyl-β-1,4-N, N'-diacetyl-chitobiose as substrate, the overall catalytic efficiency, kcat/Km of the improved chitinase was 2.7- and 2.3-fold higher than the average kcat/Km of wild types at pH 3.0 and 6.0, respectively. The mutant contained four residues that did not occur in either of the wild types. The approach presented here can easily be adopted for directed evolution of suitable chitinases for various applications.  相似文献   

5.
6.
An Escherichia coli transformant (pDSRB742CK) was obtained from the DSRB742 clone by using ultrasoft X-rays for the expression of a dextransucrase. The enzyme differed in several aspects from DSRB742 dextransucrase: it (1) was constitutive; (2) was extracellular; (3) had 2.6 times greater activity (0.035 IU/ml and 0.23 IU/mg); and (4) synthesized a highly (15.6%) -(1→3) branched dextran. Seven nucleotides of the parent gene (dsrB742) were changed in the nucleotide sequence; four nucleotides were changed in the open reading frame (ORF) that resulted in a 30 amino acid deletion in the N-terminus.  相似文献   

7.
A new phytase (APPA) with optimum pH 2.5—substantially lower than that of most of microbial phytases (pH 4.5–6.0)—was cloned from Yersinia frederiksenii and heterologously expressed in Escherichia coli. Containing the highly conserved motifs typical of histidine acid phosphatases, APPA has the highest identity (84%) to the Yersinia intermedia phytase (optimal pH 4.5), a member of histidine acid phosphatase family. Based on sequence alignment and molecular modeling of APPA and related phytases, APPA has only one divergent residue, Ser51, in close proximity to the catalytic site. To understand the acidic adaptation of APPA, five mutants (S51A, S51T, S51D, S51K, and S51I) were constructed by site‐directed mutagenesis, expressed in E. coli, purified, and characterized. Mutants S51T and S51I exhibited a shift in the optimal pH from 2.5 to 4.5 and 5.0, respectively, confirming the role of Ser51 in defining the optimal pH. Thus, a previously unrecognized factor other than electrostatics—presumably the side‐chain structure near the active site—contributes to the optimal pH for APPA activity. Compared with wild‐type APPA, mutant S51T showed higher specific activity, greater activity over pH 2.0–5.5, and increased thermal and acid stability. These properties make S51T a better candidate than the wild‐type APPA for use in animal feed. Biotechnol. Bioeng. 2009;103: 857–864. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.  相似文献   

9.
Enzymes from extreme environments possess highly desirable traits of activity and stability for application under process conditions. One such example is l-aminoacylase (E.C. 3.5.1.14) from Thermococcus litoralis (TliACY), which catalyzes the enantioselective amide hydrolysis of N-protected l-amino acids, useful for resolving racemic mixtures in the preparation of chiral intermediates. Variants of this enzyme with improved activity and altered substrate preference are highly desirable. We have created a structural homology model of the enzyme and applied various two different directed evolution strategies to identify improved variants. Mutants P237S and F251Y were 2.4-fold more active towards N-benzoyl valine relative to the wild type at 65 °C. F251 mutations to basic residues resulted in 4.5-11-fold shifts in the substrate preference towards N-benzoyl phenylalanine relative to N-benzoyl valine. The substrate preference of wild type decreases with increasingly branched and sterically hindered substrates. However, the mutant S100T/M106K disrupted this simple trend by selectively improving the substrate preference for N-benzoyl valine, with a >30-fold shift in the ratio of kcat values for N-benzoyl valine and N-benzoyl phenylalanine. Mutations that favoured N-benzoyl-phenylalanine appeared at the active site entrance, whereas those improving activity towards N-benzoyl-valine occurred in the hinge region loops linking the dimerization and zinc-binding domains in each monomer. These observations support a previously proposed substrate induced conformational transition between open and closed forms of aminoacylases.  相似文献   

10.
Polymerases evolved in nature to synthesize DNA and RNA, and they underlie the storage and flow of genetic information in all cells. The availability of these enzymes for use at the bench has driven a revolution in biotechnology and medicinal research; however, polymerases did not evolve to function efficiently under the conditions required for some applications and their high substrate fidelity precludes their use for most applications that involve modified substrates. To circumvent these limitations, researchers have turned to directed evolution to tailor the properties and/or substrate repertoire of polymerases for different applications, and several systems have been developed for this purpose. These systems draw on different methods of creating a pool of randomly mutated polymerases and are differentiated by the process used to isolate the most fit members. A variety of polymerases have been evolved, providing new or improved functionality, as well as interesting new insight into the factors governing activity.  相似文献   

11.
Laboratory evolutionists continue to generate better enzymes for industrial and research applications. Exciting developments include new biocatalysts for enantioselective carbon-carbon bond formation and fatty acid production in plants. Creative contributions to the repertoire of evolutionary methods will ensure further growth in applications and expand the scope and complexity of biological design problems that can be addressed. Researchers are also starting to elucidate mechanisms of enzyme adaptation and natural evolution by testing evolutionary scenarios in the laboratory.  相似文献   

12.
A novel phytase with preferable characteristics from Yersinia intermedia   总被引:3,自引:0,他引:3  
A Yersinia intermedia strain producing phytase was isolated from glacier soil. The phytase gene, appA, was isolated by degenerate PCR and TAIL-PCR. The full-length fragment contained 2354bp with a 1326-bp open reading frame encoding 441 amino acids. APPA contained the active site RHGXRXP and HD sequence motifs that are typical of histidine acid phosphatases. To our knowledge, this is the first report of the detection of phytase activity and cloning of the relevant gene from Y. intermedia. The gene was overexpressed in Pichia pastoris, and the purified recombinant APPA had a specific activity for sodium phytate of 3960U/mg, which is higher than that of the Citrobacter braakii phytase (previously the highest specific activity known). Recombinant APPA had high activity from pH 2 to 6 (optimum 4.5) and optimal temperature of 55 degrees C; the enzyme was resistant to pepsin and trypsin. These characteristics suggest that APPA may be highly suitable for use in the feed industry.  相似文献   

13.
Directed evolution of biocatalysts   总被引:7,自引:0,他引:7  
Directed evolution is being used increasingly in academic and industrial laboratories to modify and improve important biocatalysts. Significant advances during this period of review include compartmentalization of genes and the in vitro translation apparatus in emulsions, as well as several impressive demonstrations of catalyst improvement. Shuffling of homologous genes offers a new way to utilize natural diversity in the evolution of novel catalysts.  相似文献   

14.

Background  

Filamentous fungi are the most widely used eukaryotic biocatalysts in industrial and chemical applications. Consequently, there is tremendous interest in methodology that can use the power of genetics to develop strains with improved performance. For example, Metarhizium anisopliae is a broad host range entomopathogenic fungus currently under intensive investigation as a biologically based alternative to chemical pesticides. However, it use is limited by the relatively low tolerance of this species to abiotic stresses such as heat, with most strains displaying little to no growth between 35–37°C. In this study, we used a newly developed automated continuous culture method called the Evolugator™, which takes advantage of a natural selection-adaptation strategy, to select for thermotolerant variants of M. anisopliae strain 2575 displaying robust growth at 37°C.  相似文献   

15.
16.
Antibodies play a key role in the immune system, are characterized by a homogeneous overall structure and by their ability to interact with an almost unlimited number of compounds. Encoded by a fixed number of genes, they acquire their specificity and affinity of recognition after a succession of genetic recombination and molecular mutation processes. Since the pioneer works of Kohler and Milstein in 1975 describing the possibility of producing monoclonal antibodies with pre-determined specificity, the use of antibodies in the fields of research, diagnosis and therapy has never stopped increasing. Thus, about twenty monoclonal antibodies have yet been authorized to be used in human immunotherapy. However, a majority of these molecules have been engineered to bring them into line with their clinical use: chimerization, humanization, recombinant expression of single or fused fragments. Furthermore, the recent development of in vitro molecular evolution approaches now make it possible to engineer the affinity, the specificity as well as the stability of monoclonal antibodies. The potential of in vitro molecular evolution of antibodies will be illustrated through the example of the specificity improvement of an anti-progesterone antibody.  相似文献   

17.
The benefits of applying biocatalysts to organic synthesis, such as their high chemo-, regio-, and enantio-specificity and selectivity, must be seriously considered, especially where chemical routes are unavailable, complex or prohibitively expensive. In cases where a potential biocatalytic route is not yet efficient enough to compete with chemical synthesis, directed evolution, and/or process engineering could be implemented for improvements. While directed evolution has demonstrated great potential to enhance enzyme properties, there will always be some aspects of biocatalytic processes that it does not address. Even where it can be successfully applied, the resources required for its implementation must currently be weighed against the feasibility of, and resources available for developing a chemical synthesis route. Here, we review the potential of combining directed evolution with process engineering, and recent developments to improve their implementation. Favourable targets for the directed evolution of new biocatalysts are the syntheses of highly complex molecules, especially where chemistry, metabolic engineering or recombineering provide a partial solution. We also review some of the recent advances in the application of these approaches alongside the directed evolution of biocatalysts.  相似文献   

18.
Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution.  相似文献   

19.
Directed evolution of enzyme stability   总被引:7,自引:0,他引:7  
Modern enzyme development relies to an increasing extent on strategies based on diversity generation followed by screening for variants with optimised properties. In principle, these directed evolution strategies might be used for optimising any enzyme property, which can be screened for in an economically feasible way, even if the molecular basis of that property is not known. Stability is an interesting property of enzymes because (1) it is of great industrial importance, (2) it is relatively easy to screen for, and (3) the molecular basis of stability relates closely to contemporary issues in protein science such as the protein folding problem and protein folding diseases. Thus, engineering enzyme stability is of both commercial and scientific interest. Here, we review how directed evolution has contributed to the development of stable enzymes and to new insight into the principles of protein stability. Several recent examples are described. These examples show that directed evolution is an effective strategy to obtain stable enzymes, especially when used in combination with rational or semi-rational engineering strategies. With respect to the principles of protein stability, some important lessons to learn from recent efforts in directed evolution are (1) that there are many structural ways to stabilize a protein, which are not always easy to rationalize, (2) that proteins may very well be stabilized by optimizing their surfaces, and (3) that high thermal stability may be obtained without forfeiture of catalytic performance at low temperatures.  相似文献   

20.
The modification of cellular metabolism is of biotechnological and commercial significance because naturally occurring metabolic pathways are the source of diverse compounds used in fields ranging from medicine to bioremediation. Directed evolution is the experimental improvement of biocatalysts or cellular properties through iterative genetic diversification and selection procedures. The creation of novel metabolic functions without disrupting the balanced intracellular pool of metabolites is the primary challenge of pathway manipulation. The introduction of coordinated changes across multiple genetic elements, in conjunction with functional selection, presents an integrated approach for the modification of metabolism with benign physiological consequences. Directed evolution formats take advantage of the dynamic structures of genomes and genomic sub-structures and their ability to evolve in multiple directions in response to external stimuli. The elucidation, design and application of genome-restructuring mechanisms are key elements in the directed evolution of cellular metabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号