首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular localization of glycine transporters one (GLYT1) and two (GLYT2) stably expressed in PC12 cells has been studied. To facilitate visualization, enhanced green fluorescent protein (GFP) was fused to the amino terminus of both glycine transporters. Functional analysis of the GFP-GLYT1 and GFP-GLYT2 stable cell lines demonstrated that they exhibited high affinity for glycine and the characteristic properties of both glycine transporter subtypes. The GFP-coupled transporters were differently distributed throughout the cell. GFP-GLYT1 was mainly localized on the plasma membrane, whereas most of GFP-GLYT2 was present on large dense-core vesicles and endosomes. Both transporters were absent from the synaptic vesicle population in PC12 cells.  相似文献   

2.
Facilitative glucose transporter isoforms, GLUT1 and GLUT4, have different intracellular distributions despite their very similar structure. In insulin-responsive tissues such as adipose tissues and muscle, GLUT4 protein resides mainly in the intracellular region in a basal condition and is translocated to the plasma membrane upon stimulation of insulin. In contrast, GLUT1 protein was distributed about equally between plasma membranes and low density microsomal membranes in 3T3-L1 adipocytes. Furthermore, GLUT1 and GLUT4 were reported to be differentially targeted to the plasma membrane and intracellular region, respectively, when expressed in Chinese hamster ovary cells and HepG2 cells. To elucidate the differential intracellular targeting mechanisms, several chimeric glucose transporters in which portions of GLUT4 are replaced with corresponding portions of GLUT1 have been stably expressed in Chinese hamster ovary cells. Immunofluorescence and immunoelectron microscopy as well as measurement of glucose transport activity revealed that two domains of GLUT4, which are not the NH2- or COOH-terminal domain, determine its targeting to the intracellular vesicles. The first domain contains the consensus sequence of the leucine zipper structure, suggesting that a dimer-forming structure of the glucose transporter might be required for its proper targeting. The other domain contains 28 amino acids, nine of which are different between GLUT1 and GLUT4. Immunoelectron microscopy revealed that the chimeric transporters containing both of these two domains of GLUT1, only the first domain of GLUT1, and none of the domains, exhibited a different cellular distribution with approximately 65, 30, and 15% of the transporters apparently on the plasma membrane, respectively. The addition of insulin did not alter the apparent cellular distributions of these chimeric transporters. These domains would be specifically recognized by intracellular targeting mechanisms in Chinese hamster ovary cells.  相似文献   

3.
Profilin is a small (12–15 kDa) actin- and phospholipid-binding protein previously known only from studies on animals and lower eukaryotes but recently identified as a birch pollen allergen. Here we have identified and characterized three members of the profilin multigene family from the plant Zea mays . Two cDNAs isolated from a maize pollen library ( ZmPRO 1 and ZmPRO 3) each have a single, large open reading frame encoding a putative polypeptide 131 amino acids long with a predicted molecular weight of approximately 14 kDa. A third maize pollen cDNA ( ZmPRO 2) has two in-frame translation initiation codons. Use of the first ATG would result in a polypeptide 137 amino acids long with a molecular weight of 14.8 kDa. The three maize profilins are highly homologous to each other (>90% nucleotide and amino acid sequence identity) as well as other plant profilins but show far less similarity (30–40% amino acid sequence identity) to animal and lower eukaryote profilins. Multiple sequence alignments indicate that only nine residues are shared by all eukaryotic profilins examined. However, limited comparisons reveal domains in the NH2 and COOH termini that have a high degree of similarity suggesting functional conservation. The maize gene family size is estimated to contain three to six members based on Southern blot experiments with gene-specific and coding region probes. Northern blot analysis demonstrates that the three maize profilin cDNAs characterized here are utilized in a tissue-specific manner and are anther or pollen specific.  相似文献   

4.
The serum and glucocorticoid inducible kinase (SGK) 1 is expressed in brain tissue and upregulated by ischemia, neuronal excitation, and dehydration. The present study has been performed to elucidate the expression of SGK1 in cerebellar Purkinje cells and to explore whether it influences the colocalized glutamate transporter EAAT4. Intense SGK1 staining was observed in Purkinje cells following 48h of water deprivation. The kinase activates glutamate induced current (I(GLU)) in Xenopus oocytes heterologously expressing EAAT4, an effect mimicked by its isoforms SGK2, 3 and PKB. I(GLU) was decreased by the ubiquitin ligase Nedd4-2, an effect partially but not completely reversed by additional coexpression of the SGK kinase isoforms or PKB. According to immunohistochemistry EAAT4 protein abundance in the cell membrane was enhanced by SGK1 and decreased by Nedd4-2. In conclusion, SGK1 expression is upregulated by ischemia, excitation, and dehydration in cerebellar Purkinje cells. The upregulation of SGK1 may serve to stimulate EAAT4 and thus to reduce neuroexcitotoxicity.  相似文献   

5.
6.
Combs B  Voss K  Gamblin TC 《Biochemistry》2011,50(44):9446-9456
The microtubule-associated protein tau exists as six isoforms created through the splicing of the second, third, and tenth exons. The isoforms are classified by their number of N-terminal exons (0N, 1N, or 2N) and by their number of microtubule-binding repeat regions (3R or 4R). Hyperphosphorylated isoforms accumulate in insoluble aggregates in Alzheimer's disease and other tauopathies. These neurodegenerative diseases can be categorized based on the isoform content of the aggregates they contain. Hyperphosphorylated tau has the general characteristics of an upward electrophoretic shift, decreased microtubule binding, and an association with aggregation. Previously we have shown that a combination of seven pseudophosphorylation mutations at sites phosphorylated by GSK-3β, referred to as 7-Phos, induced several of these characteristics in full-length 2N4R tau and led to the formation of fewer but longer filaments. We sought to determine whether the same phosphorylation pattern could cause differential effects in the other tau isoforms, possibly through varied conformational effects. Using in vitro techniques, we examined the electrophoretic mobility, aggregation properties, and microtubule stabilization of all isoforms and their pseudophosphorylated counterparts. We found that pseudophosphorylation affected each isoform, but in several cases certain isoforms were affected more than others. These results suggest that hyperphosphorylation of tau isoforms could play a major role in determining the isoform composition of tau aggregates in disease.  相似文献   

7.
Differential effects of ammonium and nitrate on three heathland species   总被引:5,自引:0,他引:5  
Arnica montana and Cirsium dissectum, typical of species-rich heathlands and acidic grasslands, have declined rapidly in The Netherlands in recent years. Field surveys suggest that the decline is caused by soil acidification as a result of enhanced atmospheric N and S deposition. Therefore, the survival, growth and development of these species were studied in a water culture experiment, using nutrient solutions which differed both in mineral nitrogen form and in ammonium concentration. For comparison, the performance of a third, acid tolerant species, Calluna vulgaris, was studied. The results showed that both Arnica and Cirsium performed better using nitrate than when using ammonium as a sole nitrogen source, whereas ammonium toxicity became apparent when ammonium concentrations were raised above 100 µM. Ammonium toxicity was expressed by an increase in mortality of Arnica plants with increasing ammonium concentrations and by a reduction of biomass in Arnica and Cirsium. Furthermore, cation concentrations in both roots and shoots decreased when ammonium was supplied as a nitrogen source. In contrast, Calluna showed optimal development when using ammonium as a sole nitrogen source. In this species, only root biomass was negatively affected by high ammonium concentrations. The ecological implications of these preferences are discussed in relation to soil acidification.  相似文献   

8.
To determine the age-related changes in thyroid hormone (TH) effects on cardiac glucose transporter one (GLUT-1) and four (GLUT-4) isoforms, male Fischer 344 rats at 4, 12, and 25 months of age were studied at euthyroid, hyperthyroid and hypothyroid conditions. Hyperthyroidism was induced with daily intraperitoneal injections of triiodothyronine (15 microg/100 gm) for 10 days. Hypothyroidism was achieved with 0.025% methimazole in the drinking water for 4 weeks. Immunoblot analysis indicated that at euthyroid basal conditions GLUT-1 protein was not significantly altered with age while GLUT-4 protein was significantly reduced in 25 month old rats (82.0 +/- 28.8% of a 4 month old rat p <0.01). In 4 months old rats, GLUT-1 was increased in both hypothyroidism (432.5 +/- 208.7% of age-matched euthyroid control) and to a lesser extent in hyperthyroidism (242.0 +/- 93.3% of control) p<0.01. In 25 month old rats, hyperthyroidism was also associated with increased GLUT-1 mass (190.8 +/- 117.6% of age-matched euthyroid control) p<0.01. Hypothyroidism in this age group was not associated with significant change in GLUT-1 protein. The cardiac GLUT-4 protein was increased during both hypothyroidism and hyperthyroidism. The changes of GLUT-4 in aged rats were similar to those found in young rats. It is concluded that TH effect on GLUT-1 expression in the heart is altered with age while TH effects on GLUT-4 are age independent.  相似文献   

9.
Increased brain ammonia concentrations are a hallmark feature of several neurological disorders including congenital urea cycle disorders, Reye's syndrome and hepatic encephalopathy (HE) associated with liver failure. Over the last decade, increasing evidence suggests that hyperammonemia leads to alterations in the glutamatergic neurotransmitter system. Studies utilizing in vivo and in vitro models of hyperammonemia reveal significant changes in brain glutamate levels, glutamate uptake and glutamate receptor function. Extracellular brain glutamate levels are consistently increased in rat models of acute liver failure. Furthermore, glutamate transport studies in both cultured neurons and astrocytes demonstrate a significant suppression in the high affinity uptake of glutamate following exposure to ammonia. Reductions in NMDA and non-NMDA glutamate receptor sites in animal models of acute liver failure suggest a compensatory decrease in receptor levels in the wake of rising extracellular levels of glutamate. Ammonia exposure also has significant effects on metabotropic glutamate receptor activation with implications, although less clear, that may relate to the brain edema and seizures associated with clinical hyperammonemic pathologies. Therapeutic measures aimed at these targets could result in effective measures for the prevention of CNS consequences in hyperammonemic syndromes.  相似文献   

10.
The gonadal steroids estrogen and progesterone have been shown to have neuroprotective properties against various neurodegenerative conditions. Excessive concentrations of glutamate have been found to exert neurotoxic properties. We hypothesize that estrogen and progesterone provide neuroprotection by the autoregulation of blood and brain glutamate levels. Venous blood samples (10 ml) were taken from 31 men and 45 women to determine blood glutamate, estrogen, progesterone, glucose, glutamate-pyruvate transaminase (GPT), and glutamate-oxaloacetate transaminase (GOT) levels, collected on Days 1, 7, 12, and 21 of the female participants' menstrual cycle. Blood glutamate concentrations were higher in men than in women at the start of menstruation (P < 0.05). Blood glutamate levels in women decreased significantly on Days 7 (P < 0.01), 12 (P < 0.001), and 21 (P < 0.001) in comparison with blood glutamate levels on Day 1. There was a significant decrease in blood glutamate levels on Days 12 (P < 0.001) and 21 (P < 0.001) in comparison with blood glutamate levels on Day 7. Furthermore, there was an increase in blood glutamate levels on Day 21 compared with Day 12 (P < 0.05). In women, there were elevated levels of estrogen on Days 7 (P < 0.05), 12, and 21 (P < 0.001), and elevated levels of progesterone on Days 12 and 21 (P < 0.001). There were no differences between men and women with respect to blood glucose concentrations. Concentrations of GOT (P < 0.05) and GPT (P < 0.001) were significantly higher in men than in women during the entire cycle. The results of this study demonstrate that blood glutamate levels are inversely correlated to levels of plasma estrogen and progesterone.  相似文献   

11.
Glucose is an important metabolite and a structural precursor for articular cartilage and its transport has significant consequences for cartilage development and functional integrity. In this study the expression of facilitative glucose transporters (GLUTs) in human chondrocytes was investigated. Results showed that at least three GLUT isoforms (GLUT1, GLUT3 and GLUT9) are expressed by normal chondrocytes. Given the central role of glucose in chondrocyte physiology and metabolism, its regular provision via GLUTs will influence the metabolic activity and survival of chondrocytes in cartilage matrices.  相似文献   

12.

Background  

There are three isoforms of glutamate dehydrogenase. The isoform EC 1.4.1.4 (GDH4) catalyses glutamate synthesis from 2-oxoglutarate and ammonium, using NAD(P)H. Ammonium assimilation is critical for plant growth. Although GDH4 from animals and prokaryotes are well characterized, there are few data concerning plant GDH4, even from those whose genomes are well annotated.  相似文献   

13.
The current study investigated the behavioural response of Lepomis macrochirus following exposures to elevated carbon dioxide (CO2). For this, L. macrochirus were held at ambient pCO2 (160 μatm pCO2) for 7 days, then exposed to elevated pCO2 (8300 μatm pCO2) for 5 days, and then returned to ambient conditions for a further 5 days to recover. At the end of each exposure period, several behavioural metrics were quantified (boldness, lateralization and activity). Data showed no change in lateralization and most metrics associated with performance and boldness. During the boldness test, however, average velocity, velocity in the thigmotaxis (outer) zone and proportion of activity in the thigmotaxis zone increased with pCO2 exposure. During post‐exposure, average velocity of L. macrochirus decreased. In addition, individual rank was repeatable during the pre‐exposure and post‐exposure period in three of the 17 metrics investigated (average velocity in the middle zone, average velocity near object and total shuttles to the object zone), but not during the CO2 exposure period, suggesting that elevated pCO2 disrupted some behavioural performances. Overall, this study found elevated pCO2 caused disruption to behaviours of freshwater fishes such as L. macrochirus and effects do not appear to be as serious as has been shown for marine fishes.  相似文献   

14.
15.
16.
Nicotinamide mononucleotide adenylyltransferase (NMNAT) is the central enzyme of the NAD biosynthetic pathway. Three human NMNAT isoforms have recently been identified, but isoform-specific functions are presently unknown, although a tissue-specific role has been suggested. Analyses of the subcellular localization confirmed NMNAT1 to be a nuclear protein, whereas NMNAT2 and -3 were localized to the Golgi complex and the mitochondria, respectively. This differential subcellular localization points to an organelle-specific, nonredundant function of each of the three proteins. Comparison of the kinetic properties showed that particularly NMNAT3 exhibits a high tolerance toward substrate modifications. Moreover, as opposed to preferred NAD+ synthesis by NMNAT1, the other two isoforms could also form NADH directly from the reduced nicotinamide mononucleotide, supporting a hitherto unknown pathway of NAD generation. A variety of physiological intermediates was tested and exerted only minor influence on the catalytic activities of the NMNATs. However, gallotannin was found to be a potent inhibitor, thereby compromising its use as a specific inhibitor of poly-ADP-ribose glycohydrolase. The presence of substrate-specific and independent nuclear, mitochondrial, and Golgi-specific NAD biosynthetic pathways is opposed to the assumption of a general cellular NAD pool. Their existence appears to be consistent with important compartment-specific functions rather than to reflect simple functional redundance.  相似文献   

17.
Becker TW  Carrayol E  Hirel B 《Planta》2000,211(6):800-806
 Mesophyll cells (MCs) and bundle-sheath cells (BSCs) of leaves of the C4 plant maize (Zea mays L.) were separated by cellulase digestion to determine the relative proportion of the glutamine synthetase (GS; EC 6.3.1.2) or the NADH-glutamate dehydrogenase (GDH; EC 1.4.1.2) isoforms in each cell type. The degree of cross-contamination between our MC and BSC preparations was checked by the analysis of marker proteins in each fraction. Nitrate reductase (EC 1.6.6.1) proteins (110 kDa) were found only in the MC fraction. In contrast, ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) proteins (160 kDa) were almost exclusively present in the BSC fraction. These results are consistent with the known intercellular distribution of nitrate reductase and Fd-GOGAT proteins in maize leaves and show that the cross-contamination between our MC and BSC fractions was very low. Proteins corresponding to cytosolic GS (GS-1) or plastidic GS (GS-2) were found in both the MC and BSC fractions. While equal levels of GS-1 (40 kDa) and GS-2 (44 kDa) polypeptides were present in the BSC fraction, the GS-1 protein level in the MC fraction was 1.8-fold higher than the GS-2 protein pool. Following separation of the GS isoforms by anion-exchange chromatography of MC or BSC soluble protein extracts, the relative GS-1 activity in the MC fraction was found to be higher than the relative GS-2 activity. In the BSC fraction, the relative GS-1 activity was very similar to the relative GS-2 activity. Two isoforms of GDH with apparent molecular weights of 41 kDa and 42 kDa, respectively, were detected in the BSC fraction of maize leaves. Both GDH isoenzymes appear to be absent from the MC fraction. In the BSCs, the level of the 42-kDa GDH isoform was 1.7-fold higher than the level of the 41-kDa GDH isoform. A possible role for GS-1 and GDH co-acting in the synthesis of glutamine for the transport of nitrogen is discussed. Received: 25 January 2000 / Accepted: 30 March 2000  相似文献   

18.
19.
Omote H  Miyaji T  Juge N  Moriyama Y 《Biochemistry》2011,50(25):5558-5565
Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release of glutamate and the function of higher-order neurons. The vesicular content of glutamate is well correlated with membrane potential (Δψ), which suggests that Δψ determines the vesicular glutamate concentration. The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher-order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.  相似文献   

20.
Glutamate uptake systems are the primary mechanisms involved in excitatory amino acids clearance, their regulation is extremely important for proper neuronal function. Using cultured chick cerebellar Bergmann glia cells, the involvement of receptor tyrosine kinases in glutamate uptake was studied. Treatment of the cells with insulin-like growth factor-1 but not epidermal growth factor or neuronal growth factor, induces a dose and time dependent increase in [(3)H]-D-aspartate uptake that is sensitive to wortmannin, an inhibitor of phosphatidylinositol 3-kinase. Saturation experiments show a significant increase in V(max), suggesting that the amount of transporter molecules at the cell membrane under insulin-like growth factor-1 treatment is augmented. This interpretation was strengthen by equilibrium-binding experiments and by the fact that the increase in [(3)H]-D-aspartate uptake was not dependent on protein synthesis. The present studies suggest that insulin-like growth factor-1 signaling is involved in modulation of glutamate transporter cell surface expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号