首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Minocycline is a type of tetracycline antibiotic with broad-spectrum antibacterial activity that has been demonstrated to protect the brain against a series of central nervous system diseases. However, the precise mechanisms of these neuroprotective actions remain unknown. In the present study, we found that minocycline treatment significantly reduced HT22 cell apoptosis in a mechanical cell injury model. In addition, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining confirmed the neuroprotective effects of minocycline in vivo through the inhibition of apoptosis in a rat model of controlled cortical impact (CCI) brain injury. The western blotting analysis revealed that minocycline treatment significantly downregulated the pro-apoptotic proteins BAX and cleaved caspase-3 and upregulated the anti-apoptotic protein BCL-2. Furthermore, the beam-walking test showed that the administration of minocycline ameliorated traumatic brain injury (TBI)-induced deficits in motor function. Taken together, these findings suggested that minocycline attenuated neuronal apoptosis and improved motor function following TBI.  相似文献   

2.
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (相似文献   

3.
Free radical-induced lipid peroxidation (LP) is critical in the evolution of secondary injury following traumatic brain injury (TBI). Previous studies in our laboratory demonstrated that U-83836E, a potent LP inhibitor, can reduce post-TBI LP along with an improved maintenance of mouse cortical mitochondrial bioenergetics and calcium (Ca(2+)) buffering following severe (1.0 mm; 3.5 m/s) controlled cortical impact TBI (CCI-TBI). Based upon this preservation of a major Ca(2+) homeostatic mechanism, we have now performed dose-response and therapeutic window analyses of the ability of U-83836E to reduce post-traumatic calpain-mediated cytoskeletal (α-spectrin) proteolysis in ipsilateral cortical homogenates at its 24 h post-TBI peak. In the dose-response analysis, mice were treated with a single i.v. dose of vehicle or U-83836E (0.1, 0.3, 1.3, 3.0, 10.0 or 30.0 mg/kg) at 15 min after injury. U-83836E produced a dose-related attenuation of α-spectrin degradation with the maximal decrease being achieved at 3.0 mg/kg. Next, the therapeutic window was tested by delaying the single 3 mg/kg i.v. dose from 15 min post-injury out to 1, 3, 6 or 12 h. No reduction in α-spectrin degradation was observed when the treatment delay was 1 h or longer. However, in a third experiment, we re-examined the window with repeated U-83836E dosing (3.0 mg/kg i.v. followed by 10 mg/kg i.p. maintenance doses at 1 and 3 h after the initial i.v. dose) which significantly reduced 24 h α-α-spectrin degradation even when treatment initiation was withheld until 12 h post-TBI. These results demonstrate the relationship between post-TBI LP, disruptions in neuronal Ca(2+) homeostasis and calpain-mediated cytoskeletal damage.  相似文献   

4.
目的:建立非控制性失血性休克的家兔模型,研究两种不同复苏方案对家兔血流动力学的影响.方法:24只家兔复制成非控制性失血性休克模型,随即分成四组,假手术组(SHAM组)、休克未治疗组(SWT组)、积极性复苏组(PT组)、限制性复苏组(LT组).在实验设定的时间段内,采用两种复苏方案输入的液体有:7.5%高渗氯化钠溶液(7.5%Hypertonie saline,HTS).乳酸林格氏液(Lactated Ringers solution,LRS),羟乙基淀粉溶液(Hydroxyethyl Starch 130/0.4,HES).在实验的Omin、30min、60min、90min,监测家兔的左心室压力上升或下降的最大速率(themaximal change rateofleftintraventricularpressure.±dp/dtrnax)以及左心室收缩压(left intraventricular systolic pressure,LVSP),并在90min实验结束时,处死家免,统计出血量,补液量.结果:在监测指标±dp/dtmax和LVSP上,PT组和LT组分别与SWT组比较时,60min、90min的指标均有统计学意义(P<0.05);60min时,PT组与LT组相比较,各指标数值虽略大,但差异无统计学意义(P>0.05);90min时,PT组与LT组相比较各项指标均有统计学意义(P<0.05).补体量上,30-60min、60-90min两个阶段,PT组与LT组比较所用LRS、HES的量均有统计学意义(P<0.05);失血量上,PT组分别与LT组、SWT组比较后,均有统计学意义(P<0.05),LT组与SWT组比较无统计学意义(P>0.05).结论:在非控制性失血性休克的早期救治中,采用限制性液体复苏方案较积极性液体复苏,补液量少,并且对家兔心功能的维持作用效果比较明显;尤其在控制活动性失血上,与积极性复苏相比,限制性复苏优势明显.  相似文献   

5.
Caspase-3 mediated neuronal death after traumatic brain injury in rats   总被引:34,自引:0,他引:34  
During programmed cell death, activation of caspase-3 leads to proteolysis of DNA repair proteins, cytoskeletal proteins, and the inhibitor of caspase-activated deoxyribonuclease, culminating in morphologic changes and DNA damage defining apoptosis. The participation of caspase-3 activation in the evolution of neuronal death after traumatic brain injury in rats was examined. Cleavage of pro-caspase-3 in cytosolic cellular fractions and an increase in caspase-3-like enzyme activity were seen in injured brain versus control. Cleavage of the caspase-3 substrates DNA-dependent protein kinase and inhibitor of caspase-activated deoxyribonuclease and co-localization of cytosolic caspase-3 in neurons with evidence of DNA fragmentation were also identified. Intracerebral administration of the caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (480 ng) after trauma reduced caspase-3-like activity and DNA fragmentation in injured brain versus vehicle at 24 h. Treatment with N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone for 72 h (480 ng/day) reduced contusion size and ipsilateral dorsal hippocampal tissue loss at 3 weeks but had no effect on functional outcome versus vehicle. These data demonstrate that caspase-3 activation contributes to brain tissue loss and downstream biochemical events that execute programmed cell death after traumatic brain injury. Caspase inhibition may prove efficacious in the treatment of certain types of brain injury where programmed cell death occurs.  相似文献   

6.

Background  

Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE). Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE.  相似文献   

7.
8.
9.
Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.  相似文献   

10.
11.
Progesterone (PROG) and vitamin D hormone (VDH) have both shown promise in treating traumatic brain injury (TBI). Both modulate apoptosis, inflammation, oxidative stress, and excitotoxicity. We investigated whether 21 days of VDH deficiency would alter cognitive behavior after TBI and whether combined PROG and VDH would improve behavioral and morphological outcomes more than either hormone alone in VDH-deficient middle-aged rats given bilateral contusions of the medial frontal cortex. PROG (16 mg/kg) and VDH (5 μg/kg) were injected intraperitoneally 1 h post-injury. Eight additional doses of PROG were injected subcutaneously over 7 days post-injury. VDH deficiency itself did not significantly reduce baseline behavioral functions or aggravate impaired cognitive outcomes. Combination therapy showed moderate improvement in preserving spatial and reference memory but was not significantly better than PROG monotherapy. However, combination therapy significantly reduced neuronal loss and the proliferation of reactive astrocytes, and showed better efficacy compared to VDH or PROG alone in preventing MAP-2 degradation. VDH + PROG combination therapy may attenuate some of the potential long-term, subtle, pathophysiological consequences of brain injury in older subjects.  相似文献   

12.
本研究对无特殊致病菌大鼠失血性休克后肠道微生态的改变及肠道细菌易位进行了动态观察。结果表明,失血性休克复苏后5小时,肠道微生态即发生改变,表现为回肠内肠杆菌菌量增多,肠道内类杆菌与肠杆菌菌量比值下降,而后这一改变随时间推移逐渐恢复;肠道细菌易位率也有类似变化,易位细菌以肠杆菌为主。结果提示,大鼠失血性休克后肠道细菌易位与肠道微生态的改变有密切关系。  相似文献   

13.
Redistribution of blood flow after thermal injury and hemorrhagic shock   总被引:2,自引:0,他引:2  
Diminished mucosal mass and a diminished rate of DNA synthesis by the intestinal mucosa have been identified in the rat after thermal injury. Because these changes may be associated with ischemia, the distribution of intestinal blood flow was studied after a thermal injury and compared with the blood flow distribution after hemorrhagic shock. For the thermal injury, anesthetized animals received a standardized 20% body surface area, full-thickness injury and were given intraperitoneal saline resuscitation. By the use of 46Sc- or 141Ce-labeled microspheres, no changes in intestinal and hepatic blood flow occurred after thermal injury. In contrast, a marked redistribution of blood flow was identified after hemorrhagic shock in which a decrease in arterial blood flow was identified to the stomach and to the small and large intestine. Although clinical shock was not present, the cardiac output decreased to a comparable degree in the hemorrhagic shock and the thermal injury. These studies indicate that although physiological changes in intestinal mucosa can be demonstrated after burn injury, these changes are not due to decreases in mesenteric arterial blood flow.  相似文献   

14.
15.
16.
The introduction of acetylcholine esterase inhibitors for symptomatic treatment of Alzheimer's disease, and the promise of drugs that may delay disease progression, has created a great need for reliable diagnostic tools. However, current criteria for the clinical diagnosis of AD are largely based on the exclusion of other dementia disorders and disease markers are lacking. Since biochemical changes in the brain are reflected in the cerebrospinal fluid (CSF), the search for diagnostic tools for AD has been directed toward CSF markers. CSF markers for AD should reflect the central pathogenic processes of the disorder, i.e. the mismetabolism of β-amyloid (Aβ) and the hyperphosphorylation of tau. Several studies have found that the CSF level of Aβ42 is decreased, and the CSF levels of total tau and phosphorylated tau are increased in AD as compared with normal controls. Thus, the sensitivity of these changes in AD is high. But changes in CSF-Ab42 and CSF-tau have been found in other neurodegenerative disorders and therefore, the specificity seems to be moderately high. Other potential markers that may increase the clinical diagnostic accuracy include the CSF/serum albumin ratio (for identification of blood–brain barrier damage related to disturbances in the small intracerebral vessels), CSF-sulfatide (for identification of ongoing demyelination related to white matter changes and CSF-neurofilament light protein (NFL) [for identification of ongoing axonal (tau and NFL) degeneration]. Use of the summarized information from analyses of several CSF biochemical markers, from the clinical examination, and from brain imaging (SPECT, CT/MRI) may increase the accuracy of the clinical diagnosis.  相似文献   

17.
We investigated whether hypoxemic resuscitation from hemorrhagic shock prevents lung injury and explored the mechanisms involved. We subjected rabbits to hemorrhagic shock for 60 min by exsanguination to a mean arterial pressure of 40 mm Hg. By modifying the fraction of the inspired oxygen, we performed resuscitation under normoxemia (group NormoxRes, P(a)O(2)=95-105 mm Hg) or hypoxemia (group HypoxRes, P(a)O(2)=35-40 mm Hg). Animals not subjected to shock constituted the sham group (P(a)O(2)=95-105 mm Hg). We performed bronchoalveolar lavage (BAL) fluid, lung wet-to-dry weight ratio, and morphological studies. U937 monocyte-like cells were incubated with BAL fluid from each group. Cell peroxides, malondialdehyde, proteins, and cytokines in the BAL fluid were lower in sham than in shocked animals and in HypoxRes than in NormoxRes animals. The inverse was true for ascorbic acid and reduced glutathione. Lung edema, lung neutrophil infiltration, myeloperoxidase, and interleukin (IL)-8 gene expression were reduced in lungs of HypoxRes compared with NormoxRes animals. A colocalized higher expression of IL-8 and nitrotyrosine was found in lungs of NormoxRes animals compared to HypoxRes animals. The BAL fluid of NormoxRes animals compared with HypoxRes animals exerted a greater stimulation of U937 monocyte-like cells for proinflammatory cytokine release, particularly for IL-8. In the presence of p38-MAPK and Syk inhibitors and monosodium urate crystals, IL-8 release was reduced. We conclude that hypoxemic resuscitation from hemorrhagic shock ameliorates lung injury and reduces oxygen radical generation and lung IL-8 expression.  相似文献   

18.
Transdifferentiated and untransdifferentiated mesenchymal stem cells (MSCs) have shown therapeutic benefits in central nervous system (CNS) injury. However, it is unclear which would be more appropriate for transplantation. To address this question, we transplanted untransdifferentiated human umbilical mesenchymal stem cells (HUMSCs) and transdifferentiated HUMSCs (HUMSC-derived neurospheres, HUMSC-NSs) into a rat model of traumatic brain injury. Cognitive function, cell survival and differentiation, brain tissue morphology and neurotrophin expression were compared between groups. Significant improvements in cognitive function and brain tissue morphology were seen in the HUMSCs group compared with HUMSC-NSs group, which was accompanied by increased neurotrophin expression. Moreover, only few grafted cells survived in both the HUMSCs and HUMSC-NSs groups, with very few of the cells differentiating into neural-like cells. These findings indicate that HUMSCs are more appropriate for transplantation and their therapeutic benefits may be associated with neuroprotection rather than cell replacement.  相似文献   

19.
20.
Shen  Xiaoyan  Yuan  Guiqiang  Li  Bing  Cao  Cheng  Cao  Demao  Wu  Jiang  Li  Xiang  Li  Haiying  Shen  Haitao  Wang  Zhong  Chen  Gang 《Molecular biology reports》2022,49(3):2107-2118
Molecular Biology Reports - Early brain injury (EBI) has been considered as the major contributor to the neurological dysfunction and poor clinical outcomes of subarachnoid hemorrhage (SAH)....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号