首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cotton (Gossypium hirsutum) often encounters abiotic stress such as drought and high salinity during its development, and its productivity is significantly limited by those adverse factors. To investigate the molecular adaptation mechanisms of this plant species to abiotic stress, we identified two genes encoding Di19-like Cys2/His2 zinc-finger proteins in cotton. GFP fluorescence assay demonstrated that GhDi19-1 and GhDi19-2 are two nuclear-localized proteins. Quantitative RT-PCR and Northern blot analyses revealed that mRNA accumulation of both GhDi19-1 and GhDi19-2 was significantly promoted by salinity and drought. Expression of GUS gene driven by the GhDi19-1 and GhDi19-2 promoters, respectively, was intensively induced in cotyledons under NaCl and mannitol stresses. Overexpression of GhDi19-1 and GhDi19-2 in Arabidopsis resulted in the seedlings displaying hypersensitivity to high salinity and abscisic acid (ABA). Seed germination and seedling growth of the transgenic Arabidopsis were dramatically inhibited by salinity and ABA, compared with wild type. In addition, expression levels of the ABA-responsive genes ABF3, ABF4, ABI5 and KIN1 were also remarkably altered in the transgenic plants under ABA treatment. Collectively, our results suggested that both GhDi19-1 and GhDi19-2 may be involved in response to salt/drought stress and ABA signaling during early stages of plant development.  相似文献   

3.
4.
5.
6.
A drought stress-responsive Cys2/His2-type zinc finger protein gene DgZFP3 was previously isolated (Liu et al., Afr J Biotechnol 11:7781–7788, 2012b) from chrysanthemum. To assess roles of DgZFP3 in plant drought stress responses, we performed gain-of-function experiment. The DgZFP3-overexpression tobacco plants showed significant drought tolerance over the wild type (WT). The transgenic lines exhibited less accumulation of H2O2 under drought stress, more accumulation of proline and greater activities of peroxidase (POD) and superoxide dismutase than the WT under both control conditions and drought stress. In addition, there was greater up-regulation of the ROS-related enzyme genes (NtSOD and NtPOD) and stress-related genes (NtLEA5 and NtDREB) in transgenic lines under normal or drought conditons. Thus DgZFP3 probably plays a positive regulatory role in drought stress response and has the potential to be utilized in transgenic breeding to improve drought stress tolerance in plants.  相似文献   

7.
Sakamoto H  Araki T  Meshi T  Iwabuchi M 《Gene》2000,248(1-2):23-32
The genes encoding Cys(2)/His(2)-type zinc-finger proteins constitute a large family in higher plants. To elucidate the functional roles of these types of protein, four different members of the gene family were cloned from Arabidopsis by PCR-aided methods. One was identical to the already reported gene STZ/ZAT10 and three were as yet unidentified genes, then designated AZF1 (Arabidopsis zinc-finger protein 1), AZF2 and AZF3. The AZF- and STZ-encoded proteins contain two canonical Cys(2)/His(2)-type zinc-finger motifs, separated by a long spacer. Three conserved regions, named B-box, L-box, and DNL-box, were also recognized outside the zinc-finger motifs, as in other members of the two-fingered Cys(2)/His(2)-type zinc-finger protein family. These four genes were positioned on the same branch of a phylogenetic tree constructed based on the zinc-finger motif sequences, suggesting their structural and functional relationship. RNA blot analysis showed that all four genes were mainly expressed in roots and at different levels in other organs. Expression of the four genes responded to water stress. High-salt treatment resulted in elevated levels of expression of all of these genes. Low-temperature treatment increased the expression levels of AZF1, AZF3, and STZ, but not AZF2. Only AZF2 expression was strongly induced by ABA treatment, where the time course of the induction was similar to that caused by high salinity. In situ localization showed that AZF2 mRNA accumulated in the elongation zone of the roots under the salt-stress condition. These results suggest that AZF1, AZF2, AZF3, and STZ are all involved in the water-stress response in an ABA-dependent or -independent pathway to regulate downstream genes.  相似文献   

8.
Receptor-like protein kinases (RLKs) play vital roles in sensing outside signals, yet little is known about RLKs functions and roles in stress signal perception and transduction in plants, especially in wild soybean. Through the microarray analysis, GsSRK was identified as an alkaline (NaHCO3)-responsive gene, and was subsequently isolated from Glycine soja by homologous cloning. GsSRK encodes a 93.22 kDa protein with a highly conserved serine/threonine protein kinase catalytic domain, a G-type lectin region, and an S-locus region. Real-time PCR results showed that the expression levels of GsSRK were largely induced by ABA, salt, and drought stresses. Over expression of GsSRK in Arabidopsis promoted seed germination, as well as primary root and rosette leaf growth during the early stages of salt stress. Compared to the wild type Arabidopsis, GsSRK overexpressors exhibited enhanced salt tolerance and higher yields under salt stress, with higher chlorophyll content, lower ion leakage, higher plant height, and more siliques at the adult developmental stage. Our studies suggest that GsSRK plays a crucial role in plant response to salt stress.  相似文献   

9.
10.
11.
The calcium-dependent protein kinase (CDPK) family is needed in plant signaling during various physiological pathways. The Arabidopsis AtCPK6 gene belongs to the subclass of stress-inducible CDPKs, which is stimulated by salt and osmotic stress. To elucidate the physiological function of AtCPK6, transgenic Arabidopsis plants under the control of double CaMV 35S promoter were obtained. AtCPK6 over-expressing plants showed enhanced tolerance to salt/drought stresses. The elevated tolerance of the AtCPK6 over-expressing plants was confirmed by the change of proline and malondialdehyde (MDA). Real-time PCR analyses revealed that the expression levels of several stress-regulated genes were altered in AtCPK6 over-expressing plants. However, cpk6 mutant displayed no obvious difference with control. These results are likely to indicate that AtCPK6 is functionally redundant and a positive regulator involved in the tolerance to salt/drought stress in Arabidopsis.  相似文献   

12.
Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca2+ concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca2+ sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsis 2 different CMLs, AtCML37 and AtCML42 are antagonistically involved in drought stress response. Whereas a CML37 knock-out line, cml37, was highly susceptible to drought stress, CML42 knockout line, cml42, showed no obvious effect compared to wild type (WT) plants. Accordingly, the analysis of the phytohormone abscisic acid (ABA) revealed a significant reduction of ABA upon drought stress in cml37 plants, while in cml42 plants an increase of ABA was detected. Summarizing, our results show that both CML37 and CML42 are involved in drought stress response but show antagonistic effects.  相似文献   

13.
14.
The EPF family is a group of Cys2/His2zinc-finger proteins in petunia. In these proteins, characteristically long spacer regions have been found to separate the zinc fingers. Our previous DNA-binding studies demonstrated that two-fingered proteins (ZPT2-1 and ZPT2-2), which have spacers of different lengths, bind to two separate AGT core motifs in a spacing specific manner. To investigate the possibility that these proteins might distinguish between the target sequences on the basis of spacing between the core motifs, we screened petunia cDNA library for other proteins belonging to this family. Initial screening by PCR and subsequent cloning of full-length cDNAs allowed us to identify the genes for 10 new proteins that had two, three or four zinc fingers. Among the two-fingered proteins the spacing between zinc fingers varied from 19 to 65 amino acids. The variation in the length of spacers was even more extensive in three- and four-fingered proteins. The presence of such proteins is consistent with our hypothesis that the spacing between the core motifs might be important for target sequence recognition. Furthermore, comparison of diverse protein structures suggests that three- and two-fingered proteins might have resulted due to successive loss of fingers from a four-fingered protein during molecular evolution. We also demonstrate that a highly conserved motif (QALGGH) among the members of EPF family and other Cys2/His2 zinc-finger proteins in plants is critical for the DNA-binding activity.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号