首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elongase of very long chain fatty acids-4 (ELOVL4) is the only mammalian enzyme known to synthesize C28-C36 fatty acids. In humans, ELOVL4 mutations cause Stargardt disease-3 (STGD3), a juvenile dominant macular degeneration. Heterozygous Stgd3 mice that carry a pathogenic mutation in the mouse Elovl4 gene demonstrate reduced levels of retinal C28-C36 acyl phosphatidylcholines (PC) and epidermal C28-C36 acylceramides. Homozygous Stgd3 mice die shortly after birth with signs of disrupted skin barrier function. In this study, we report generation of transgenic (Tg) mice with targeted Elovl4 expression driven by an epidermal-specific involucrin promoter. In homozygous Stgd3 mice, this transgene reinstates both epidermal Elovl4 expression and synthesis of two missing epidermal lipid groups: C28-C36 acylceramides and (O-linoleoyl)-omega-hydroxy C28-C36 fatty acids. Transgene expression also restores skin barrier function and rescues the neonatal lethality of homozygous Stgd3 mice. These studies establish the critical requirement for epidermal C28-C36 fatty acid synthesis for animal viability. In addition to the skin, Elovl4 is also expressed in other tissues, including the retina, brain, and testes. Thus, these mice will facilitate future studies to define the roles of C28-C36 fatty acids in the Elovl4-expressing tissues.  相似文献   

2.
The FA Elongase-4 (ELOVL4) enzyme mediates biosynthesis of both very long chain (VLC)-PUFAs and VLC-saturated FA (VLC-SFAs). VLC-PUFAs play critical roles in retina and sperm function, whereas VLC-SFAs are predominantly associated with brain function and maintenance of the skin permeability barrier. While some ELOVL4 mutations cause Autosomal Dominant Stargardt-like Macular Dystrophy (STGD3), other ELOVL4 point mutations, such as L168F and W246G, affect the brain and/or skin, leading to Spinocerebellar Ataxia-34 (SCA34) and Erythrokeratodermia variabilis. The mechanisms by which these ELOVL4 mutations alter VLC-PUFA and VLC-SFA biosynthesis to cause the different tissue-specific pathologies are not well understood. To understand how these mutations alter VLC-PUFA and VLC-SFA biosynthesis, we expressed WT-ELOVL4, L168F, and W246G ELOVL4 variants in cell culture and supplemented the cultures with VLC-PUFA or VLC-SFA precursors. Total lipids were extracted, converted to FA methyl esters, and quantified by gas chromatography. We showed that L168F and W246G mutants were capable of VLC-PUFA biosynthesis. W246G synthesized and accumulated 32:6n3, while L168F exhibited gain of function in VLC-PUFA biosynthesis as it made 38:5n3, which we did not detect in WT-ELOVL4 or W246G-expressing cells. However, compared with WT-ELOVL4, both L168F and W246G mutants were deficient in VLC-SFA biosynthesis, especially the W246G protein, which showed negligible VLC-SFA biosynthesis. These results suggest VLC-PUFA biosynthetic capabilities of L168F and W246G in the retina, which may explain the lack of retinal phenotype in SCA34. Defects in VLC-SFA biosynthesis by these variants may be a contributing factor to the pathogenic mechanism of SCA34 and Erythrokeratodermia variabilis.  相似文献   

3.
Compared with other mammalian tissues, retina is highly enriched in PUFA. Long-chain PUFA (LC-PUFA; C18-C24) are essential FAs that are enriched in the retina and are necessary for maintenance of normal retinal development and function. The retina, brain, and sperm also contain very LC-PUFA (VLC-PUFA; >C24). Although VLC-PUFA were discovered more than two decades ago, very little is known about their biosynthesis and functional roles in the retina. This is due mainly to intrinsic difficulties associated with working on these unusually long polyunsaturated hydrocarbon chains and their existence in small amounts. Recent studies on the FA elongase elongation of very long chain fatty acids-4 (ELOVL4) protein, however, suggest that VLC-PUFA probably play some uniquely important roles in the retina as well as the other tissues. Mutations in the ELOVL4 gene are found in patients with autosomal dominant Stargardt disease. Here, we review the recent literature on VLC-PUFA with special emphasis on the elongases responsible for their synthesis. We focus on a novel elongase, ELOVL4, involved in the synthesis of VLC-PUFA, and the importance of these FAs in maintaining the structural and functional integrity of retinal photoreceptors.  相似文献   

4.
Autosomal dominant Stargardt-like macular dystrophy (STGD3) in humans results from mutations in elongation of very long chain FAs-like 4 (ELOVL4), which leads to vision loss in young adults. ELOVL4 is an integral endoplasmic reticulum (ER) protein that mediates the elongation of very long chain (VLC) FAs. Mutations in ELOVL4 lead to truncation and mislocalization of the translated protein from the ER, the site of FA elongation. Little is known about the enzymatic elongation of VLC-FAs by ELOVL4. We over-expressed full-length mouse ELOVL4, an N-glycosylation-deficient mutant, an ER-retention mutant, and mutants of active site histidines to parse their individual roles in VLC-FA elongation. ELOVL4 elongated appropriate precursors to the corresponding VLC-FA species ≥28 carbons. Active site histidine mutants of ELOVL4 did not elongate appropriate precursors, establishing ELOVL4 as the elongase. Displacing ELOVL4 from the ER was sufficient to cause loss of condensation activity, while absence of N-glycosylation was irrelevant for enzyme function. This study shows that ELOVL4 enzymatic activity is governed by individual histidines in its active site and the ER microenvironment, both of which are essential for elongation of VLC-FAs.  相似文献   

5.
Elongation of very long chain fatty acids (ELOVL)5 is one of seven mammalian fatty acid condensing enzymes involved in microsomal fatty acid elongation. To determine the in vivo substrates and function of ELOVL5, we generated Elovl5(-/-) mice. Studies using liver microsomal protein from wild-type and knockout mice demonstrated that the elongation of gamma-linolenic (C18:3, n-6) to dihomo-gamma-linolenic (C20:3, n-6) and stearidonic (C18:4, n-3) to omega3-arachidonic acid (C20:4, n-3) required ELOVL5 activity. Tissues of Elovl5(-/-) mice accumulated the C18 substrates of ELOVL5 and the levels of the downstream products, arachidonic acid (C20:4, n-6) and docosahexaenoic acid (DHA, C22:6, n-3), were decreased. A consequence of decreased cellular arachidonic acid and DHA concentrations was the activation of sterol regulatory element-binding protein (SREBP)-1c and its target genes involved in fatty acid and triglyceride synthesis, which culminated in the development of hepatic steatosis in Elovl5(-/-) mice. The molecular and metabolic changes in fatty acid metabolism in Elovl5(-/-) mice were reversed by dietary supplementation with arachidonic acid and DHA. These studies demonstrate that reduced ELOVL5 activity leads to hepatic steatosis, and endogenously synthesized PUFAs are key regulators of SREBP-1c activation and fatty acid synthesis in livers of mice.  相似文献   

6.
Very long chain polyunsaturated fatty acid (VLC-PUFA)-containing glycerophospholipids are highly enriched in the retina; however, details regarding the specific synthesis and function of these highly unusual retinal glycerophospholipids are lacking. Elongation of very long chain fatty acids-4 (ELOVL4) has been identified as a fatty acid elongase protein involved in the synthesis of VLC-PUFAs. Mutations in ELOVL4 have also been implicated in an autosomal dominant form of Stargardt disease (STGD3), a type of juvenile macular degeneration. We have generated photoreceptor-specific conditional knock-out mice and used high performance liquid chromatography-mass spectrometry (HPLC-MS) to examine and analyze the fatty acid composition of retinal membrane glycerophosphatidylcholine and glycerophosphatidylethanolamine species. We also used immunofluorescent staining and histology coupled with electrophysiological data to assess retinal morphology and visual response. The conditional knock-out mice showed a significant decrease in retinal glycerophospholipids containing VLC-PUFAs, specifically contained in the sn-1 position of glycerophosphatidylcholine, implicating the role of Elovl4 in their synthesis. Conditional knock-out mice were also found to have abnormal accumulation of lipid droplets and lipofuscin-like granules while demonstrating photoreceptor-specific abnormalities in visual response, indicating the critical role of Elovl4 for proper rod or cone photoreceptor function. Altogether, this study demonstrates the essential role of ELOVL4 in VLC-PUFA synthesis and retinal function.  相似文献   

7.
Despite the considerable beneficial effects of n-3 and n-6 very long chain polyunsaturated fatty acids (VLC-PUFAs), very little is known about the factors that regulate their uptake and intracellular distribution in living cells. This issue was addressed in cells expressing liver-type fatty acid-binding protein (L-FABP) by real time multiphoton laser scanning microscopy of novel fluorescent VLC-PUFAs containing a conjugated tetraene fluorophore near the carboxyl group and natural methylene-interrupted n-3 or n-6 grouping. The fluorescent VLC-PUFAs mimicked many properties of their native nonfluorescent counterparts, including uptake, distribution, and metabolism in living cells. The unesterified fluorescent VLC-PUFAs distributed either equally in nuclei versus cytoplasm (22-carbon n-3 VLC-PUFA) or preferentially to cytoplasm (20-carbon n-3 and n-6 VLC-PUFAs). L-FABP bound fluorescent VLC-PUFA with affinity and specificity similar to their nonfluorescent natural counterparts. Regarding n-3 and n-6 VLC-PUFA, L-FABP expression enhanced uptake into the cell and cytoplasm, selectively altered the pattern of fluorescent n-6 and n-3 VLC-PUFA distribution in cytoplasm versus nuclei, and preferentially distributed fluorescent VLC-PUFA into nucleoplasm versus nuclear envelope, especially for the 22-carbon n-3 VLC-PUFA, correlating with its high binding by L-FABP. Multiphoton laser scanning microscopy data showed for the first time VLC-PUFA in nuclei of living cells and suggested a model, whereby L-FABP facilitated VLC-PUFA targeting to nuclei by enhancing VLC-PUFA uptake and distribution into the cytoplasm and nucleoplasm.  相似文献   

8.
9.
10.
Elongated, highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis are not fully characterized. To investigate whether neurons themselves are capable of essential fatty acid elongation and desaturation or are dependent upon the support of other brain cells, primary cultures of rat neurons and astrocytes were incubated with [1-14C] 18:2 omega-6, [1-14C]20:4 omega-6, [1-14C]18:3 omega-3, or [1-14C]20:5 omega-3 and their elongation/desaturation products determined. Neuronal cultures were routinely incapable of producing significant amounts of delta 4-desaturase products. They desaturated fatty acids very poorly at every step of the pathway, producing primarily elongation products of the 18- and 20-carbon precursors. In contrast, astrocytes actively elongated and desaturated the 18- and 20-carbon precursors. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary products from 18:3 omega-3 were 20:5 omega-3, 22:5 omega-3, and 22:6 omega-3. The majority of the long-chain fatty acids formed by astrocyte cultures, particularly 20:4 omega-6 and 22:6 omega-3, was released into the extracellular fluid. Although incapable of producing 20:4 omega-6 and 22:6 omega-3 from precursor fatty acids, neuronal cultures readily took up these fatty acids from the medium. These findings suggest that astrocytes play an important supportive role in the brain by elongating and desaturating omega-6 and omega-3 essential fatty acid precursors to 20:4 omega-6 and 22:6 omega-3, then releasing the long-chain polyunsaturated fatty acids for uptake by neurons.  相似文献   

11.
Retinal long-chain PUFAs (LC-PUFAs, C12-C22) play important roles in normal human retinal function and visual development, and some epidemiological studies of LC-PUFA intake suggest a protective role against the incidence of advanced age-related macular degeneration (AMD). On the other hand, retinal very long-chain PUFAs (VLC-PUFAs, Cn>22) have received much less attention since their identification decades ago, due to their minor abundance and more difficult assays, but recent discoveries that defects in VLC-PUFA synthetic enzymes are associated with rare forms of inherited macular degenerations have refocused attention on their potential roles in retinal health and disease. We thus developed improved GC-MS methods to detect LC-PUFAs and VLC-PUFAs, and we then applied them to the study of their changes in ocular aging and AMD. With ocular aging, some VLC-PUFAs in retina and retinal pigment epithelium (RPE)/choroid peaked in middle age. Compared with age-matched normal donors, docosahexaenoic acid, adrenic acid, and some VLC-PUFAs in AMD retina and RPE/choroid were significantly decreased, whereas the ratio of n-6/n-3 PUFAs was significantly increased. All these findings suggest that deficiency of LC-PUFAs and VLC-PUFAs, and/or an imbalance of n-6/n-3 PUFAs, may be involved in AMD pathology.  相似文献   

12.
13.
The concentration-dependent metabolism of 1-(14)C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [(14)C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-(14)C]20:5n-3 to [3-(14)C]22:6n-3 was more efficient than that of [1-(14)C]20:4n-6 to [3-(14)C]22:5n-6. At low substrate concentration (4 microM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 microM). The conversion of [1-(14)C]22:5n-3 to [1-(14)C]22:6n-3 was 1.7 times more efficient than that of [1-(14)C]22:4n-6 to [1-(14)C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-(14)C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-(14)C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-(14)C]20:4n-6 or [1-(14)C]22:4n-6 to [(14)C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-(14)C]20:5n-3 and [1-(14)C]22:5n-3 to [(14)C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

14.
Elongation of very long-chain fatty acids (ELOVL) members were overexpressed in two preadipocyte cell lines, ELOVL2 and ELOVL3 in 3T3-L1 cells, and ELOVL1-3 in F442A cells. Cells overexpressing ELOVL2, whose preferred substrates are arachidonic acid (AA, C20:4n-6) and eicosapentaenoic acid (EPA, C20:5n-3), showed an enhanced triacylglycerol (TAG) synthesis and subsequent accumulation of lipid droplets. Incorporation of fatty acid (FA) but not of glucose into TAG was enhanced by ELOVL2-overexpression. Two lipogenic genes encoding diacylglycerol acyltransferase-2 (DGAT2) and fatty acid-binding protein-4 (FABP4, aP2) were induced in ELOVL2-overexpressing cells, whereas no such effect was seen on the fatty acid synthase (FAS) gene.  相似文献   

15.
16.
Previously, it was found that a novel class of neutral fucosylated glycosphingolipids (GSLs) is required for male fertility. These lipids contain very long-chain (C26-C32) polyunsaturated (4-6 double bonds) fatty acid residues (VLC-PUFAs). To assess the role of these complex GSLs in spermatogenesis, we have now investigated with which of the testicular cell types these lipids are associated. During postnatal development, complex glycosylated and simple VLC-PUFA sphingolipids were first detectable at day 15, when the most advanced germ cells are pachytene spermatocytes. Their synthesis is most likely driven by ceramide synthase-3. This enzyme is encoded by the Cers3/Lass3 gene (longevity assurance genes), and out of six members of this gene family, only Cers3 mRNA expression was limited to germ cells, where it was up-regulated more than 700-fold during postnatal testicular maturation. Increasing levels of neutral complex VLC-PUFA GSLs also correlated with the progression of spermatogenesis in a series of male sterile mutants with arrests at different stages of spermatogenesis. Remarkably, fucosylation of the complex VLC-PUFA GSLs was not essential for spermatogenesis, as fucosylation-deficient mice produced nonfucosylated versions of the complex testicular VLC-PUFA GSLs, had complete spermatogenesis, and were fertile. Nevertheless, sterile Galgt1(-/-) mice, with a defective meiotic cytokinesis and a subsequent block in spermiogenesis, lacked complex but contained simple VLC-PUFA GSLs, as well as VLC-PUFA ceramides and sphingomyelins, indicating that the latter lipids are not sufficient for completion of spermatogenesis. Thus, our data imply that both glycans and the particular acyl chains of germinal sphingolipids are relevant for proper completion of meiosis.  相似文献   

17.
Stargardt disease-3 (STGD3) is a juvenile dominant macular degeneration caused by mutations in elongase of very long chain fatty acid-4. All identified mutations produce a truncated protein which lacks a motif for protein retention in endoplasmic reticulum, the site of fatty acid synthesis. In these studies of Stgd3-knockin mice carrying a human pathogenic mutation, we examined two potential pathogenic mechanisms: truncated protein-induced cellular stress and lipid product deficiency. Analysis of mutant retinas detected no cellular stress but demonstrated selective deficiency of C32-C36 acyl phosphatidylcholines. We conclude that this deficit leads to the human STGD3 pathology.  相似文献   

18.
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.  相似文献   

19.
ELOVL2 is a member of the mammalian microsomal ELOVL fatty acid enzyme family, involved in the elongation of very long-chain fatty acids including PUFAs required for various cellular functions in mammals. Here, we used ELOVL2-ablated (Elovl2(-/-)) mice to show that the PUFAs with 24-30 carbon atoms of the ω-6 family in testis are indispensable for normal sperm formation and fertility in male mice. The lack of Elovl2 was associated with a complete arrest of spermatogenesis, with seminiferous tubules displaying only spermatogonia and primary spermatocytes without further germinal cells. Furthermore, based on acyl-CoA profiling, heterozygous Elovl2(+/-) male mice exhibited haploinsufficiency, with reduced levels of C28:5 and C30:5n-6 PUFAs, which gave rise to impaired formation and function of haploid spermatides. These new insights reveal a novel mechanism involving ELOVL2-derived PUFAs in mammals and previously unrecognized roles for C28 and C30 n-6 PUFAs in male fertility. In accordance with the function suggested for ELOVL2, the Elovl2(-/-) mice show distorted levels of serum C20 and C22 PUFAs from both the n-3 and the n-6 series. However, dietary supplementation with C22:6n-3 could not restore male fertility to Elovl2(+/-) mice, suggesting that the changes in n-6 fatty acid composition seen in the testis of the Elovl2(+/-) mice, cannot be compensated by increased C22:6n-3 content.  相似文献   

20.
The concentration-dependent metabolism of 1-14C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [14C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-14C]20:5n-3 to [3-14C]22:6n-3 was more efficient than that of [1-14C]20:4n-6 to [3-14C]22:5n-6. At low substrate concentration (4 μM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 μM). The conversion of [1-14C]22:5n-3 to [1-14C]22:6n-3 was 1.7 times more efficient than that of [1-14C]22:4n-6 to [1-14C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-14C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-14C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-14C]20:4n-6 or [1-14C]22:4n-6 to [14C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-14C]20:5n-3 and [1-14C]22:5n-3 to [14C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号