首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To help elucidate the function of the cystic fibrosis transmembrane conductance regulator (CFTR), we have undertaken a cross-species analysis of the DNA sequence which encodes this protein. We have isolated and characterized the cDNA of the bovine homologue of CFTR. The deduced amino acid sequence shows high overall identity with the published sequences from human and mouse, although there is marked variability between the different potential functional domains. The region around human amino acid 508, which is deleted in 70% of cystic fibrosis chromosomes, is highly conserved across species; of the missense cystic fibrosis mutations reported to date, all of the amino acids in the normal human sequence are conserved in the bovine and mouse sequences. A single amino acid encoded by the human cDNA (Ser-434) is missing in the bovine sequence, and there are two amino acids encoded by the bovine sequence which are absent in the human. These all stem from in-frame 3-base omissions within the sequences. In addition to the cow, we amplified the DNA sequences encoding a portion of the R-domain from sheep, monkey, rabbit, and guinea pig. These sequences show relatively low overall sequence identity (63%), but nearly all of the potential protein kinase A and protein kinase C phosphorylation sites are conserved over all of the species examined. Our results suggest functional significance for certain highly conserved residues and putative domains within CFTR.  相似文献   

2.
3.
 The amino acid sequences of the human terminal complement components show extensive structural similarity to each other. In this study the C8β and C9 cDNAs of Japanese flounder, Paralichthys olivaceus, were cloned and analyzed. The derived deduced amino acid sequences of the two terminal components were homologous to those of humans, in that the sequences of both species contained LDL receptor, EGF precursor, and two thrombospondin domains. Japanese flounder C9 was found to have a second thrombospondin region in the C-terminus, similar to that reported for rainbow trout and pufferfish. Moreover, these two complement component cDNAs of Japanese flounder had partial similarity to human perforin. These findings show that Japanese flounder C8β and C9 have similar structures, which supports the hypothesis that the terminal complement genes originated from the same ancestral gene. Collectively, these features emphasize the strong similarity among the members of the terminal complement family. Received: 23 March 1999 / Revised: 1 June 1999  相似文献   

4.
5.
6.
The CD19 molecule is a 95,000 Mr cell-surface protein of human B lymphocytes with two extracellular Ig-like domains and a 240 amino acid cytoplasmic tail. cDNA encoding human CD19 and the cytoplasmic domain of the mouse CD19 Ag were previously isolated. In this report, those cDNA were used to isolate cDNA or genomic DNA encoding the complete mCD19 protein and a portion of CD19 from the guinea pig. Mouse pre-B and B cell lines expressed two CD19 mRNA species of 2.7 and 2.2 kb, whereas myeloma cell lines were negative as were T cell lines. Similarly, among mouse organs, only spleen contained detectable CD19 mRNA. These results suggest that only B cells express CD19 in mouse, as in man. Sequence determination revealed substantial conservation, with hCD19 and mCD19 being 66% and hCD19 and gpCD19 being 73% identical in amino acid sequence. The cytoplasmic region of CD19 was most highly conserved with human/mouse being 73% identical and human/guinea pig being 83% identical in amino acid sequence. Isolation of the hCD19 and mCD19 genes and determination of exon/intron boundaries revealed that both genes were structurally similar and were composed of at least 15 exons, 4 encoded extracellular domains, and 9 encoded cytoplasmic domains. Six of the exons that encoded cytoplasmic domains were essentially identical in sequence in all three species indicating that these regions have undergone considerable selective pressure to conserve sequences. Thus, CD19 appears to be well conserved in structure and expression through recent mammalian evolution and the highly conserved cytoplasmic domains may play a critical role in the transduction of CD19-mediated signals.  相似文献   

7.
The cDNA sequences of chicken and hagfish prothrombin have been determined. The sequences predict that prothrombin from both species is synthesized as a prepro-protein consisting of a putative Gla domain, two kringle domains, and a two-chain protease domain. Chicken and hagfish prothrombin share 51.6% amino acid sequence identity (313/627 residues). Both chicken and hagfish prothrombin are structurally very similar to human, bovine, rat, and mouse prothrombin and all six species share 41% amino acid sequence identity. Amino acid sequence alignments of human, bovine, rat, mouse, chicken, and hagfish prothrombin suggest that the thrombin B-chain and the propeptide-Gla domain are the regions most constrained for the common function(s) of vertebrate prothrombins.The nucleotide sequences reported in this paper have been submitted to the EMBL/Genbank database under the following secession numbers: M 81391 for Gallus gallus, M 81393 for Eptatretus stouti.Correspondence to: R.T.A. MacGillivray  相似文献   

8.
The RET proto-oncogene encodes a receptor tyrosine kinase required for development of the kidney and neural crest-derived cell types. Alternative splicing of the 3' exons of human RET results in three protein isoforms with distinct C-termini: RET9, RET51, and RET43. These RET isoforms show differential binding to downstream adapter molecules, suggesting they may have distinct signaling functions. We have characterized Ret 3' sequences in mouse and investigated alternative splicing of this region. We found that the organization of Ret 3' sequences is very similar to human RET. The mouse locus also has alternatively spliced C-terminal coding regions, and the sequences corresponding to RET9 and RET51 are highly conserved in both position and sequence with the human locus. Further, we compared the predicted C-terminal amino acids of RET9 and RET51 in seven vertebrate species, and found that they are well conserved. We have identified sequence encoding a putative ret43 isoform in mouse, however the predicted amino acid sequence showed low homology to human RET43. Our data suggest that RET isoforms are evolutionarily highly conserved over a broad range of species, which may indicate that each isoform has a distinct role in normal RET function.  相似文献   

9.
Amino acid sequences of human collagen alpha 1(VI) and alpha 2(VI) chains were completed by cDNA sequencing and Edman degradation demonstrating that the mature polypeptides contain 1009 and 998 amino acid residues respectively. In addition, they contain small signal peptide sequences. Both chains show 31% identity in the N-terminal (approximately 235 residues) and C-terminal (approximately 430 residues) globular domains which are connected by a triple helical segment (335-336 residues). Internal alignment of the globular sequences indicates a repetitive 200-residue structure (15-23% identity) occurring three times (N1, C1, C2) in each chain. These repeating subdomains are connected to each other and to the triple helix by short (15-30 residues) cysteine-rich segments. The globular domains possess several N-glycosylation sites but no cell-binding RGD sequences, which are exclusively found in the triple helical segment. Sequencing of alpha 2(VI) cDNA clones revealed two variant chains with a distinct C2 subdomain and 3' non-coding region. The repetitive segments C1, C2 and, to a lesser extent, N1 show significant identity (15-18%) to the collagen-binding A domains of von Willebrand factor (vWF) and they are also similar to some integrin receptors, complement components and a cartilage matrix protein. Since the globular domains of collagen VI come into close contact with triple helical segments during the formation of tissue microfibrils it suggests that the globular domains bind to collagenous structures in a manner similar to the binding of vWF to collagen I.  相似文献   

10.
Human liver fatty acid binding protein (L-FABP) cDNA clones were identified in a liver cDNA library. The two longest clones were completely sequenced. The nucleotide sequence predicts a protein of 127 amino acid residues. Identity of the clones was confirmed by limited amino acid sequence analysis of purified human L-FABP peptides and Edman degradation of radiolabeled in vitro translated FABP. Statistical analysis of the amino acid and mRNA sequences of human L-FABP, rat L-FABP, rat intestinal (I-) FABP, and mouse 422 protein indicates that the human and rat L-FABPs are highly homologous and that L-FABP and I-FABP diverged a long time ago (approximately 650-690 million years ago), although they are more closely related to each other than either of them is to 422 protein. Secondary structure predictions from the primary sequence of human and rat L-FABP reveal a region (residues 12-30) that might be the putative fatty acid binding domain of the two L-FABPs. Knowledge of the primary amino acid sequence of L-FABP and possible functional domains will be pivotal in further defining and understanding the mechanism of ligand binding and transfer by this protein.  相似文献   

11.
Extended proteins such as calmodulin and troponin C have two globular terminal domains linked by a central region that is exposed to water and often acts as a function-regulating element. The mechanisms that stabilize the tertiary structure of extended proteins appear to differ greatly from those of globular proteins. Identifying such differences in physical properties of amino acid sequences between extended proteins and globular proteins can provide clues useful for identification of extended proteins from complete genomes including orphan sequences. In the present study, we examined the structure and amino acid sequence of extended proteins. We found that extended proteins have a large net electric charge, high charge density, and an even balance of charge between the terminal domains, indicating that electrostatic interaction is a dominant factor in stabilization of extended proteins. Additionally, the central domain exposed to water contained many amphiphilic residues. Extended proteins can be identified from these physical properties of the tertiary structure, which can be deduced from the amino acid sequence. Analysis of physical properties of amino acid sequences can provide clues to the mechanism of protein folding. Also, structural changes in extended proteins may be caused by formation of molecular complexes. Long-range effects of electrostatic interactions also appear to play important roles in structural changes of extended proteins.  相似文献   

12.
We have isolated and sequenced cDNA clones corresponding to the entire coding sequences of the human lysosomal membrane glycoproteins, lamp-1 and lamp-2 (h-lamp-1 and h-lamp-2). The deduced amino acid sequences indicate that h-lamp-1 and h-lamp-2 consist of 416 and 408 amino acid residues, respectively, and suggest that 27 and 28 NH2-terminal residues are cleavable signal peptides. The major portions of both h-lamp-1 and h-lamp-2 reside on the luminal side of the lysosome and are heavily glycosylated by N-glycans: h-lamp-1 and h-lamp-2 were found to contain 19 and 16 potential N-glycosylation sites, respectively. The findings are consistent with the results obtained by endo-beta-N-acetylglucosaminidase F treatment of h-lamp-1 and h-lamp-2 precursors, described in the preceding paper (Carlsson, S. R., Roth, J., Piller, F., and Fukuda, M. (1988) J. Biol. Chem. 263, 18911-18919). These N-glycosylation sites are clustered into two domains separated by a hinge-like structure enriched with proline and serine in h-lamp-1 or proline and threonine in h-lamp-2. The two domains of h-lamp-1 on each side of the hinge region are homologous to each other, whereas no such homology was detected between the two domains of h-lamp-2. Both proteins have one putative transmembrane domain consisting of 24 hydrophobic amino acids near the COOH terminus, and contain a short cytoplasmic segment composed of 11 amino acid residues at the COOH-terminal end. Comparison of h-lamp-1 and h-lamp-2 sequences reveal strong homology between the two molecules, particularly in the proximity to the COOH-terminal end. It is possible that this portion is important for targeting the molecules to lysosomes. These results also suggest that lamp-1 and lamp-2 are evolutionarily related. Comparison of known lamp-1 sequences among different species, on the other hand, show that human lamp-1 has more similarity to lamp-1 from other species than to human lamp-2. This fact, taken together with the finding that h-lamp-2 lacks repeating domains, suggests that lamp-1 and lamp-2 diverged from a putative ancestor gene in early stages of evolution. These results also suggest that lamp-1 and lamp-2 probably have distinctly separate functions despite the fact that they share many structural features.  相似文献   

13.
14.
15.
We have determined the cDNA sequence and exon/intron structure of the human CLPX gene encoding a human ortholog of the E. coli ClpX chaperone and protease subunit. The CLPX gene comprises 14 exons and encodes a 633-amino acid-long precursor polypeptide. The polypeptide contains an N-terminal putative mitochondrial transit peptide, and expression of a full-length ClpX cDNA tagged at its C-terminus (Myc-His) shows that the polypeptide is transported into mitochondria. FISH analysis localized the CLPX gene to human Chromosome (Chr) 15q22.1-22.32. This localization was refined by radiation hybrid mapping placing the CLPX gene 4.6 cR distal to D15S159. Murine ClpX cDNA was sequenced, and the mouse Clpx locus was mapped to a position between 31 and 42 cM offset from the centromere on mouse Chr 9. Experimental observations indicate the presence of a pseudogene in the mouse genome and sequence variability between mouse ClpX cDNAs from different strains. Alignment of the human and mouse ClpX amino acid sequences with ClpX sequences from other organisms shows that they display the typical modular organization of domains with one AAA+ domain common to a large group of ATPases and several other domains conserved in ClpX orthologs linked by non-conserved sequences. Notably, a C-4 zinc finger type motif is recognized in human and mouse ClpX. This motif of so far unknown function is present only in a subset of the known ClpX sequences. Received: 5 April 2000 / Accepted: 14 June 2000  相似文献   

16.
Here we report the characterization of a human mRNA encoding a novel protein denoted C1orf9 (chromosome 1 open reading frame 9). The cDNA sequence, derived from a testis cDNA library, contains 5700 bp which encodes an open reading frame of 1254 amino acids. The deduced protein contains a putative N-terminal signal peptide and one putative transmembrane region, indicating membrane localization. No significant homology was found with known characterized proteins. However, a 150 amino acid region has significant homology to deduced protein sequences from other organisms, including Caenorhabditis elegans (43% identity), Saccharomyces cerevisiae (47% identity), Schizosaccharomyces pombe (48% identity), and two proteins from Arabidopsis thaliana (42% and 40% identity), suggesting a novel family of conserved domains. The C1orf9 gene was assigned to chromosome 1q24. The gene spans approximately 78.7 kb and is organized into at least 24 exons. Expression analysis revealed a single C1orf9 mRNA species of approximately 6.0 kb with a predominant expression in pancreas and testis, and only low levels of expression in other tissues examined.  相似文献   

17.
18.
We present the complete amino acid sequence of the human keratin 10 (type I) intermediate filament chain expressed in terminally differentiated epidermal cells. Comparisons of this sequence with its mouse and bovine counterparts allow us to describe structural features of the functional end domains. First, sections of their respective end domains are highly conserved and permit a redefinition of earlier models for their subdomainal organization. The amino-terminal end domain consists of El, the first 57-58 residues that are basic, glycine-rich, and have been highly conserved among the three species; V1, a region of well-defined quasi repeats of the motif aliphatic-serine/glycinen; and H1, a newly recognized short acidic sequence that has been conserved among the type I keratin family. The carboxyl-terminal end consists of V2 and E2 whose properties but not sequence resemble V1 and E1, respectively. Second, since the E1, H1, and E2 sequences have been highly conserved between the three species, we suggest they are critical elements in defining intermediate filament function. Third, we note that the E and V sequences of the keratin 10 (and other keratin) chains share many properties in common with protein chain turns found in globular proteins. We therefore propose a model in which these sequences form omega loop-like structures (Leszczynski, J. N. & Rose, G. D. (1986) Science 234, 849-855) on the surface of keratin intermediate filaments. This represents the first specific proposal for the end domain structure of any intermediate filament chain.  相似文献   

19.
We have previously characterized a 65-kilodalton protein (p65) as an interleukin 2 stimulated phosphoprotein in human T cells and showed that three endopeptide sequences of p65 are present in the sequence of l-plastin [Zu et al. (1990) Biochemistry 29, 1055-1062]. In this paper, we present the complete primary structure of p65 based on the cDNA isolated from a human T lymphocyte (KUT-2) cDNA library. Analysis of p65 sequences and the amino acid composition of cleaved p65 N-terminal peptide indicated that the deduced p65 amino acid sequence exactly coincides with that of l-plastin over the C-terminal 580 residues [Lin et al. (1988) Mol. Cell. Biol. 8, 4659-4668] and has a 57-residue extension at the N-terminus to l-plastin. Computer-assisted structural analysis revealed that p65 is a multidomain molecule involving at least three intriguing functional domains: two putative calcium-binding sites along the N-terminal 80 amino acid residues; a putative calmodulin-binding site following the calcium-binding region; and two tandem repeats of putative actin-binding domains in its middle and C-terminal parts, each containing approximately 240 amino acid residues. These results suggest that p65 belongs to actin-binding proteins.  相似文献   

20.
Several functional domains, especially the active site regions, in aromatase cytochrome P450 were inferred by alignment of amino acid sequences of the enzyme from five species, human, rat, mouse, chicken, and trout, and that of Pseudomonas putida cytochrome P450cam, whose x-ray structure has been determined (Poulos, T.L., Finzel, B.C., and Howard, A.J. (1987) J. Mol. Biol. 195, 687-700). The predicted functions of these domains have been evaluated by site-directed mutagenesis. Eighteen mutants, including seven new mutants, have been generated in this laboratory. The seven newly prepared mutants are Q123E, Q123H, T310S, T310C, R365K, R365A, and N delta 20 (a mutant without the first 20 amino acids). The preparation and characterization of these new mutants are described. The structural model described in this paper should be very useful for future structure-function studies of aromatase by site-directed mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号