首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

2.
Key factors influencing the efficiency of transformation of embryogenic cultures, induced from immature zygotic embryos, of avocado cv. ‘Duke 7’ were evaluated. Initially, the sensitivity of somatic embryos to the antibiotics kanamycin, used for selection, carbenicillin, cefotaxime and timentin, all used for elimination of Agrobacterium cells, were evaluated. Isolated globular somatic embryos were more sensitive to kanamycin than embryogenic masses, and 25 mg l−1 kanamycin completely restricted callus proliferation. Cefotaxime at 500 mg l−1 partially inhibited proliferation of embryogenic cultures, while both carbenicillin and timentin did not affect callus growth. For genetic transformation, somatic embryos were infected with A. tumefaciens containing the pBINUbiGUSint plasmid. After 2 days, the embryos were transferred to selection medium supplemented with 50 mg l−1 kanamycin and 250 mg l−1 timentin for 2 months. Then, kanamycin level was increased to 100 mg l−1 for two additional months. The A. tumefaciens strain AGL1 yielded higher transformation rates, 6%, than EHA105 or LBA4404, 1.2%. The percentage of kanamycin resistant calli obtained was significantly influenced by the embryogenic line used as source of explants. Genetic transformation was confirmed by PCR and Southern blot analysis. A significant improvement in the germination rate was obtained when transgenic embryos were cultured in liquid MS medium with 4.44 μM BA and 2.89 μM GA3 for 3 days in a roller drum and later transferred to the same medium gelled with 7 g l−1 agar. Plants from five independent transgenic lines were acclimated and grown in the greenhouse, being phenotipically similar to control plants.  相似文献   

3.
Zoysia tenuifolia Willd. ex Trin. is one of the most popularly cultivated turfgrass. This is the first report of successful plant regeneration and genetic transformation protocols for Z. tenuifolia using Agrobacterium tumefaciens. Initial calli was induced from stem nodes incubated on a Murashige and Skoog (1962) (MS) medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg l−1 6-benzyladenine (BA), with a frequency of 53%. Compact calli were selected and subcultured monthly on the fresh medium. Sixty-nine percent of the calli could be induced to regenerate plantlets when the calli incubated on a MS medium supplemented with 0.2 mg l−1 BA under darkness. For genetic transformation, calli were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, about 12% of the callus explants produced hygromycin resistant calli on MS medium supplemented with 2 mg l−1 2,4-D, 1 mg l−1 BA, 50 mg l−1 hygromycin, 500 mg l−1 cefotaxime after 8 weeks. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 0.2 mg l−1 BA, 50 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 46% of the resistant calli differentiated into shoots. Finally, all the resistant shoots were rooted on 1/2 MS media supplemented with 50 mg l−1 hygromycin, 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by the detection of β-glucuronidase activity in the primary transformants and by PCR and Southern hybridization analysis. About 5% of the total inoculated callus explants produced transgenic plants after approximately 5 months. The procedure described will be useful for both, the introduction of desired genes into Z. tenuifolia and the molecular analysis of gene function.  相似文献   

4.
5.
A reproducible and highly efficient protocol for Agrobacterium tumefaciens-mediated transformation of indica rice (Oryza sativa L. subsp. indica cv. ADT 43) was established. Prior to transformation, embryogenic callus were induced from mature seeds incubated on Linsmaier and Skoog (LS) medium supplemented with 2.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 thiamine-HCl. Callus, intact mature seeds, and other in vitro derived explants (leaf bases, leaf blades, coleoptiles, and root-tips) were immersed in a bacterial suspension culture of A. tumefaciens strain EHA 105, OD600 of 0.8, and co-cultivated on LS medium for 2 days in the dark at 25 ± 2°C. Based on GUS expression analysis, 10 min incubation time of explants on a co-cultivation medium containing 100 μM acetosyringone was optimum. Following β-glucuronidase (GUS) assay and polymerase chain reaction (PCR) analysis, transformants were identified. Stable integration of the transgene was confirmed in four putatively transformed T0 plants by Southern blot analysis. The copy number of the transgene in these lines, one to two, was then determined. Among the observations made, necrosis of co-cultivated explants was a problem, as well as sensitivity of callus to Agrobacterium infection. Levels of necrosis could be minimized following co-cultivation of explants in a medium consisting of 30% LS and containing 10 g l−1 (14), polyvinyl pyrrolidone, 10% coconut water, and 250 mg l−1 timentin (15:1). This latter medium also increased the final transformation efficiency to 15.33%.  相似文献   

6.
A genetic transformation system has been developed for selected embryogenic cell lines of hybrids Abies alba × A. cephalonica (cell lines AC2, AC78) and Abies alba × A. numidica (cell line AN72) using Agrobacterium tumefaciens. The cell lines were derived from immature or mature zygotic embryos on DCR medium containing BA (1 mg l−1). The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene under the control of double dCaMV 35S promoter and the neomycin phosphotransferase selection marker gene driven by the nos promoter. The regeneration of putative transformed tissues started approximately 1 week after transfer to the selection medium containing 10 mg geneticin l−1. GUS activity was detected in most of the geneticin-resistant sub-lines AN72, AC2 and AC78, and the transgenic nature of embryogenic cell lines was confirmed by PCR approach. Plantlet regeneration from PCR-positive embryogenic tissues has been obtained as well. The presence of both gus and nptII genes was confirmed in 11 out of 36 analysed emblings.  相似文献   

7.
Saussurea involucrata is a valuable traditional Chinese medicinal herb. This is the first report of a successful genetic transformation protocol for S. involucrata using Agrobacterium tumefaciens. Leaf explants were incubated with A. tumefaciens strain EHA105 harboring the binary vector pCAMBIA 1301, which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, about 23.7% of the explants produced hygromycin-resistant calli on MS basal medium (Murashige and Skoog in Physiol Plant 15: 473–497, 1962) supplemented with 1 mg l−1 benzyladenine (BA), 0.1 mg l−1 α-naphthaleneacetic acid (NAA), 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 20 mg l−1 hygromycin, and 500 mg l−1 cefotaxime. Shoots were regenerated following transfer of the resistant calli to shoot induction medium containing 1.5 mg l−1 BA, 0.1 mg l−1 NAA, 0.25 mg l−1 gibberellic acid (GA3), 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime, and about 67.5% of the resistant calli differentiated into shoots. Finally, 80% of the hygromycin-resistant shoots rooted on MS media supplemented with 0.2 mg l−1 NAA, 20 mg l−1 hygromycin, and 250 mg l−1 cefotaxime. The transgenic nature of the transformants was demonstrated by detection of β-glucuronidase activity in the primary transformants and by Southern blot hybridization analysis. About 16% of the total inoculated leaf explants produced transgenic plants after approximately 5 months. Using this optimized transformation system, a rice ortholog of the Arabidopsis FLOWERING LOCUS T gene, Hd3a, was transferred into S. involucrata. Introduction of this gene caused an early-flowering phenotype in S. involucrata.  相似文献   

8.
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were transformed in the presence of 100 μM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration. Kanamycin at 20 mg l−1 was used for selecting transformed cells. Adventitious shoots regenerated on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 4.5 μM thidiazuron, 50 mg l−1 adenine sulfate, and 10% coconut water. GUS- and polymerase chain reaction (PCR)-positive shoots from the cut ends of hypocotyls were produced via an intermediate callus stage. Presence of the GUS and nptII genes in GUS-positive shoots were confirmed by PCR and copy number of the nptII gene in PCR-positive shoots was determined by Southern blotting. Three transgenic plantlets were acclimatized to the greenhouse. This transformation and regeneration system using hypocotyls provides a foundation for Agrobacterium-mediated transformation of green ash. Studies are underway using a construct containing the Cry8Da protein of Bacillus thuringiensis for genetic transformation of green ash.  相似文献   

9.
Jatropha curcas L. (Physic nut) is a commercially important non-edible oil seed crop known for its use as an alternate source of biodiesel. In order to investigate the morphogenic potential of immature embryo, explants from four developmental stages were cultured on medium supplemented with combinations of auxins and cytokinins. It was found that the size of embryo is critical for the establishment of callus. Immature embryos (1.1–1.5 cm) obtained from the fruits 6 weeks after pollination showed a good response of morphogenic callus induction (85.7%) and subsequent plant regeneration (70%) with the maximum number of plantlets (4.7/explant) on Murashige and Skoog’s (MS) medium supplemented with IBA (0.5 mg l−1) and BA (1.0 mg l−1). The above medium when supplemented with growth adjuvants such as 100 mg l−1 casein hydrolysate + 200 mg l−1 l-glutamine + 8.0 mg l−1 CuSO4 resulted in an even higher frequency of callus induction (100%). Plant regeneration (90%) with the maximum number of plantlets (10/explant) was achieved on MS medium supplemented with 500 mg l−1 polyvinyl pyrrolidone + 30 mg l−1 citric acid + 1 mg l−1 BA + 0.5 mg l−1 Kn + 0.25 mg l−1 IBA. It was observed that plantlet regeneration could occur either through organogenesis of morphogenic callus or via multiplication of pre-existing meristem in immature embryos. The age of immature embryos and addition of a combination of growth adjuvants to the culture medium appear to be critical for obtaining high regeneration rates. Well-developed shoots rooted on half-strength MS medium supplemented with 0.5 mg l−1 IBA and 342 mg l−1 trehalose. The rooted plants after acclimatization were successfully transferred to the field in different agro-climatic zones in India. This protocol has been successfully evaluated on five elite lines of J. curcas.  相似文献   

10.
The regeneration potential and antioxidative enzyme activities of economically important Brassica rapa var. turnip were evaluated. Calli were induced from leaf explants of seed-derived plantlets on Murashige and Skoog (MS) medium incorporated with different concentrations of various plant growth regulators (PGRs). The highest leaf explant response (83%) was recorded for 2.0 mg l−1 benzyladenine (BA) and 1.0 mg l−1 α-naphthaleneacetic acid (NAA). Subsequent subculturing of callus after 3 weeks of culture, on medium with similar compositions of PGRs, induced shoot organogenesis. The highest shoot induction response (83%) was recorded for 5.0 mg l−1 BA after 5 weeks of transfer. However, 7.8 shoots/explant were recorded for 2.0 mg l−1 BA. The transferring of shoots to elongation medium resulted in 5.1-cm-long shoots on 10 mg l−1 of gibberellic acid (GA3). Rooted plantlets were obtained on MS medium containing different concentrations of indole butyric acid (IBA). The determination of activities of antioxidative enzymes (superoxide dismutase [SOD], ascorbate peroxidase [APX], catalase [CAT], glutathione peroxidase [GPX], and peroxidase [POD]) revealed involvement of these enzymes in callus formation and differentiation. All of the activities were interlinked with each other and played significant roles in the scavenging of toxic free radicals. This study will help in the advancement of a regeneration protocol for B. rapa var. turnip and the understanding of the functions of antioxidative enzymes in plant differentiation.  相似文献   

11.
Persian poppy (Papaver bracteatum Lindl.) is an important medicinal plant and source of the opium alkaloids codeine, morphine and thebaine. Transgenic root cultures of P. bracteatum Lindl. are well-defined model systems to investigate the molecular and metabolic regulation of benzylisoquinoline alkaloid biosynthesis. Agrobacterium rhizogenes was able to produce hairy roots on wounded Persian poppy seedlings. Excised shoots from 7-day-old Persian poppy were co-cultivated with the A. rhizogenes strain R15834 carrying the pBI121 binary vector. All media, except for the co-cultivation medium, included 40 mg l−1 paromomycin to select for pBI121 transformants and 200 mg l−1 cefotaxime to eliminate the Agrobacterium. Eight weeks after infection, paromomycin-resistant roots appeared on 45–50% of explants maintained on hormone-free medium. Isolated hairy roots were propagated in liquid medium containing 1.0 mg l−1 1-naphthaleneacetic acid to promote rapid growth. Also, callus induction and shoot regeneration of transformed Calli in vitro was achieved on B5 medium containing 1.0 mg l−1 1-naphthaleneacetic acid. Detection of the neomycin phosphotransferase gene and GUS histochemical localization confirmed the integrative transformation of root cultures. This is the first study to illustrate useful protocol to introduce foreign genes into transgenic Persian poppy hairy root cultures using A. rhizogenes strain R15834.  相似文献   

12.
A system for genetic transformation and subsequent plant regeneration via indirect organogenesis from callus was developed for Aloe vera. Young seedlings served as primary explants. Callus cultures were established on Murashige and Skoog (1962) medium supplemented with 3 mg l−1 benzylaminopurine and 2 mg l−1 indole acetic acid. A protocol was developed to switch from the differentiated stage, using in vitro shoots or young regenerated plants, back to the de-differentiated stage of the callus and vice versa. Long-term maintenance of this callus paved the way for genetic manipulation of Aloe vera. Calluses were bombarded with a plasmid containing uidA and hpt genes, both under the control of the 35S promoter. Dithiothreitol and gibberellic acid were found to play a major role in reducing tissue necrosis following bombardment. Transformed shoots were regenerated under stepwise selection in hygromycin-containing liquid medium supplemented with different antioxidants. Amberlite XAD-4 resin was embedded into alginate beads and added to the selection medium. Amberlite was best for adsorbing different phenolic compounds and blocking explant necrosis. Shoot initiation occurred after transfer of the transformed cells to Murashige and Skoog medium supplemented with 2.0 mg l−1 thidiazuron and 0.1 mg l−1 indole butyric acid. Murashige and Skoog medium supplemented with 1 mg l−1 zeatin riboside promoted shoot elongation. Rooting and plant development were obtained on Murashige and Skoog basal medium supplemented with 15 mg l−1 hygromycin lacking growth regulators. The transgenic nature of the regenerated plants was verified by histochemical GUS assay and Southern blot hybridization.  相似文献   

13.
Olive tree, Olea europaea L., is one of the most commercially important oil crops. A reliable protocol for the genetic transformation of this species has been developed. Embryogenic calli were infected with different Agrobacterium tumefaciens strains harboring pBINUbiGUSint or pGUSINT binary plasmids. These vectors contain the nos-nptII and the uidA gene driven by the maize polyubiquitin Ubi1 and CaMV35S promoter, respectively. Inoculated explants were cocultured for 2 days, and later selected in the presence of 200 mg l−1 paromomycin. The inclusion of a 3 weeks selection period in liquid medium supplemented with 50 mg l−1 paromomycin was critical for elimination of chimaeric calli. Agrobacterium strain AGL1 containing pBINUbiGUSint plasmid yielded higher transformation frequencies than EHA105 or LBA4404. Globular somatic embryos (SE), 1–2 mm diameter, cultured in the selection medium in groups of three, were the best explant for transformation. Using this protocol, transformation frequencies in the range of 20–45%, based on the number of infected explants proliferating in the selection medium, have been obtained. More than 100 independent transgenic lines were generated, and 16 of them converted to plants. Transgenic plants were acclimated and grown in the greenhouse, being phenotypically similar to wild type plants. The uidA gene was strongly expressed in transgenic material during the in vitro regeneration phase; however, β-glucuronidase (GUS) activity in pBINUbiGUSint transgenic plants was neither detected in shoots growing in vitro nor in acclimated plants. Transgenic leaves, however, contained high levels of NPTII protein. By contrast, plants transformed with the pGUSINT plasmid showed a strong GUS activity in leaves. The protocol here described will allow the genetic improvement of this traditional crop.  相似文献   

14.
An efficient micropropagation system for Hylotelephium tatarinowii (Maxim.) H. Ohba, a rare medicinal plant, has been developed. Callus induced from leaf explants placed onto Murashige and Skoog (MS) medium with supplementation of plant growth regulators. When the concentration of 2,4-dicholorophenoxy acetic acid was as high as 2.0 mg l−1 in combination with 0.5 mg l−1 6-benzylaminopurine (6-BAP), the callus induction rate reached 92.1%. Adventitious shoots were observed on callus exposed to 1.0 mg l−1 6-BAP, with 81.5% frequency of shoot regeneration after 30 d. Flower buds appeared after subculture. Regenerated shoots could flower normally in vitro. Up to 100% of the regenerated shoots formed complete plantlets on half-strength MS medium without any growth regulator, with an average of 5.9 roots per shoot explant. Quantitative analysis of flavonoids and rutin showed that the phytochemical profile of callus and regenerated plants was similar to that of wild plants.  相似文献   

15.
A protocol for adventitious shoot formation in Symphyotrichum novi-belgii was developed after investigating the effects of cultivar and hormone combinations. A Murashige and Skoog medium with 1.0 mg l−1 6-benzyladenine induced adventitious shoot formation in 15 out of 19 cultivars. Addition of 0.1 mg l−1 indole-3-acetic acid or naphthaleneacetic acid increased the total number of shoots per explant, but not the number of shoots longer than 1 cm. Addition of dichlorophenoxyacetic acid (2,4-D) promoted callus formation, but inhibited shoot elongation. A transformation system for the two cultivars Victoria Fanny and Victoria Jane was developed by co-cultivation of leaf explants with Agrobacterium tumefaciens. Three bacterial strains (LBA 4404, A281 and C58) all carrying the binary vector, p35S-GUS-INT, and harbouring the uidA gene coding for β-glucuronidase (GUS) were used. Regeneration of transgenic plants after co-cultivation with A281 was independent of cultivar, and all explants produced callus followed by indirect shoot formation. In ‘Victoria Fanny’ shoots were formed faster and without a callus phase after co-cultivation with LBA 4404 or C58. The highest number of potentially transformed shoots was regenerated after co-cultivation of ‘Victoria Fanny’ leaf explants with LBA 4404. Integration of the transgenes in the plant genome was confirmed using PCR and Southern blot hybridisation. To verify that the transgenes could be transferred to offspring, crosses were conducted between three transgenic lines of ‘Victoria Fanny’ and two wild type pollen donors. It was demonstrated that viable seeds were produced and that the uidA gene was inherited.  相似文献   

16.
The halophyte Leymus chinensis (Trin.) is a perennial rhizome grass (tribe Gramineae) that is widely distributed in China, Mongolia and Siberia, where it is produced as a forage product. In this report, we establish a highly reproducible plant regeneration system through somatic embryogenesis. Two explants, mature seeds and leaf base segments were used; these parts displayed different responses to combinations of growth factors that affect embryogenic callus induction, callus type optimization and plant regeneration. The highest callus induction frequency was obtained on Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of 5.0 mg l−1 l-glutamic acid. The inclusion of 5.0 mg l−1 l-glutamic acid was found to significantly promote primary callus induction, embryogenic callus formation and callus status improvement. Subculturing on maintenance medium for 1–2 months before plant regeneration was found to be essential for the optimization of callus type and the maturation of embryogenic callus. Callus relative water content and growth rate were simultaneously investigated during callus maintenance, and found to possibly be related to callus type. Shoots were differentiated from the embryogenic callus on the optimal medium with MS salts containing 0.2–0.5 mg l−1 α-naphthalene acetic acid (NAA), 2.0 mg l−1 kinetin (Kn) and 2.0 g l−1 casamino acids in 71.0 and 69.2% of wild-type (WT) and Jisheng No.1 (JS) plants, respectively. Plant regeneration was variable depending on NAA levels, and the addition of casamino acids stimulated the maturation of embryogenic callus and plant regeneration. Transferring callus with shoots onto half-strength MS medium resulted in rooting within 1 week. The growth of regenerated plants was also surveyed in the field. This is the first report of plant regeneration through somatic embryogenesis from mature seeds and leaf base segments of L. chinensis.  相似文献   

17.
Young leaf explants of Ocimum sanctum L. incubated on solidified Murashige and Skoog (MS) medium supplemented with 2 mg l−1 1-naphthaleneacetic acid (NAA) and 0.2 mg l−1 kinetin (Kn) developed rhizogenic callus. When these were subcultured onto MS medium supplemented with 1.5 mg l−1 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 0.5 mg l−1 NAA, friable rhizogenic callus was observed. Upon transfer of this friable callus onto liquid MS medium containing 4 mg l−1 NAA and 1.3 mg l−1 6-benzyladnine (BA) under continuous agitation at 90 rpm and 16 h photoperiod, roots with an optimum dry weight of 1,460 mg l−1 were obtained. An ethyl acetate extract of these roots exhibited 1, 1–diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.  相似文献   

18.
We describe culture conditions for a high-efficiency in vitro regeneration system of Papaver nudicaule through somatic embryogenesis and secondary somatic embryogenesis. The embryogenic callus induction rate was highest when petiole explants were cultured on Murashige and Skoog (MS) medium containing 1.0 mg l−1 α-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzyladenine (BA) (36.7%). When transferred to plant growth regulator (PGR)-free medium, 430 somatic embryos formed asynchronously from 90 mg of embryogenic callus in each 100-ml flask. Early-stage somatic embryos were transferred to MS medium containing 1.0 mg l−1 BA and 1.0 mg l−1 NAA to germinate at high frequency (97.6%). One-third-strength MS medium with 1.0% sucrose and 1.0 mg l−1 GA3 had the highest frequency of plantlet conversion from somatic embryos (91.2%). Over 90% of regenerated plantlets were successfully acclimated in the greenhouse. Secondary somatic embryos were frequently induced directly when the excised hypocotyls of the primary somatic embryos were cultured on MS medium without PGRs. Sucrose concentration significantly affected the induction of secondary embryos. The highest induction rate (89.5) and number of secondary somatic embryos per explant (9.3) were obtained by 1% sucrose. Most secondary embryos (87.2–94.3%) developed into the cotyledonary stage on induction medium. All cotyledonary secondary embryos were converted into plantlets both in liquid and on semisolid 1/3-strength MS medium with 1.0% sucrose.  相似文献   

19.
Lettuce (Lactuca sativa) transformation varies by genotype. Various culture parameters have been studied in order to improve the transformation efficiency of lettuce cultivars. However, no improved transformation procedure for recalcitrant lettuce cultivars has yet been established. Here, we demonstrate the effects of varying concentrations and distinct combinations of growth regulators on recalcitrant lettuce transformation efficiency. More precisely, we assessed differences in the effects of several growth regulator combinations, including N-6(2-isopentenyl)-adenine (2ip), on induction of callus and regeneration of shoots after co-cultivation with Agrobacterium. When two commercial recalcitrant cultivars, Red Romaine and Bibb, were cultured on a medium with 2ip 1 mg l−1, IAA 0.1 mg l−1, and subsequently transferred to a second medium with BA 0.4 mg l−1, NAA 0.05 mg l−1 for selection and shoot regeneration, transformation efficiencies reached 8 and 9%, respectively. Stable integration and transmission of the transgene in T1 generation plants were confirmed by molecular analysis. This procedure represents a simple, efficient, and general means of transforming various lettuce cultivars, including recalcitrant commercial cultivars.  相似文献   

20.
Broussonetia papyrifera is well-known for its bark fibers, which are used for making paper, cloth, rope etc. This is the first report of a successful genetic transformation protocol for B. papyrifera using Agrobacterium tumefaciens. Callus was initiated at a frequency of about 100% for both leaf and petiole explants. Shoots formed on these calli with a success rate of almost 100%, with 14.08 and 8.36 shoots regenerating from leave-derived and petiole-derived callus, respectively. For genetic transformation, leaf explants of B. papyrifera were incubated with A. tumefaciens strain LBA4404 harboring the binary vector pCAMBIA 1301 which contains the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene (gus-int) as a reporter gene. Following co-cultivation, leaf explants were cultured on Murashige and Skoog (Physiol Plant 15:473, 1962) (MS) medium supplemented with 1.5 mg l−1 benzyladenine (BA) and 0.05 mg l−1 indole-3-butyric acid (IBA) (CI medium) containing 5 mg l−1 hygromycin and 500 mg l−1 cefotaxime, in the dark. Hygromycin-resistant calli were induced from leaf explants 3 weeks thereafter. Regenerating shoots were obtained after transfer of the calli onto MS medium supplemented with 1.5 mg l−1 BA, 0.05 mg l−1 IBA, and 0.5 mg l−1 gibberellic acid (GA3) (SI medium), 5 mg l−1 hygromycin and 250 mg l−1 cefotaxime under fluorescent light. Finally, shoots were rooted on half strength MS medium (1/2 MS) supplemented with 10 mg l−1 hygromycin. Transgene incorporation and expression was confirmed by PCR, Southern hybridisation and histochemical GUS assay. Using this protocol, transgenic B. papyrifera plants containing desirable new genes can be obtained in approximately 3 months with a transformation frequency as high as 44%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号