首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antisense RNA complementary to a putative helicase gene (hel3.1) of a cos-type Streptococcus thermophilus bacteriophage was used to impede the proliferation of a number of cos-type S. thermophilus bacteriophages and one pac-type bacteriophage. The putative helicase gene is a component of the Sfi21-type DNA replication module, which is found in a majority of the S. thermophilus bacteriophages of industrial importance. All bacteriophages that strongly hybridized a 689-bp internal hel3.1 probe were sensitive to the expression of antisense hel3.1 RNA. A 40 to 70% reduction in efficiency of plaquing (EOP) was consistently observed, with a concomitant decrease in plaque size relative to that of the S. thermophilus parental strain. When progeny were released, the burst size was reduced. Growth curves of S. thermophilus NCK1125, in the presence of variable levels of bacteriophage kappa3, showed that antisense hel3.1 conferred protection, even at a multiplicity of infection of approximately 1.0. When the hel3.1 antisense RNA cassette was expressed in cis from the kappa3-derived phage-encoded resistance (PER) plasmid pTRK690::ori3.1, the EOP for bacteriophages sensitive to PER and antisense targeting was reduced to between 10(-7) and 10(-8), beyond the resistance conferred by the PER element alone (less than 10(-6)). These results illustrate the first successful applications of antisense RNA and explosive delivery of antisense RNA to inhibit the proliferation of S. thermophilus bacteriophages.  相似文献   

2.
The putative primase gene and other genes associated with the Sfi21-prototype genome replication module are highly conserved in Streptococcus thermophilus bacteriophages. Expression of antisense RNAs complementary to the putative primase gene (pri3.1) from S. thermophilus phage κ3 provided significant protection from κ3 and two other Sfi21-type phages. Expression of pri3.10-AS, an antisense RNA that covered the entire primase gene, reduced the efficiency of plaquing (EOP) of κ3 to 3 × 10−3 and reduced its burst size by 20%. Mutant phages capable of overcoming antisense inhibition were not recovered. Thirteen primase-specific antisense cassettes of different lengths (478 to 1,512 bp) were systematically designed to target various regions of the gene. Each cassette conferred some effect, reducing the EOP to between 0.8 and 3 × 10−3. The largest antisense RNAs (1.5 kb) were generally found to confer the greatest reductions in EOP, but shorter (0.5 kb) antisense RNAs were also effective, especially when directed to the 5′ region of the gene. The impacts of primase-targeted antisense RNAs on phage development were examined. The expression of pri3.10-AS resulted in reductions in target RNA abundance and the number of phage genomes synthesized. Targeting a key genome replication function with antisense RNA provided effective phage protection in S. thermophilus.  相似文献   

3.
Growing interest in bacteriophage research and use, especially as an alternative treatment option for multidrug-resistant bacterial infection, requires rapid development of production methods and strengthening of bacteriophage activities. Bacteriophage adsorption to host cells initiates the process of infection. The rotating magnetic field (RMF) is a promising biotechnological method for process intensification, especially for the intensification of micromixing and mass transfer. This study evaluates the use of RMF to enhance the infection process by influencing bacteriophage adsorption rate. The RMF exposition decreased the t50 and t75 of bacteriophages T4 on Escherichia coli cells and vb_SauM_A phages on Staphylococcus aureus cells. The T4 phage adsorption rate increased from 3.13 × 10−9 mL × min−1 to 1.64 × 10−8 mL × min−1. The adsorption rate of vb_SauM_A phages exposed to RMF increased from 4.94 × 10−9 mL × min−1 to 7.34 × 10−9 mL × min−1. Additionally, the phage T4 zeta potential changed under RMF from −11.1 ± 0.49 mV to −7.66 ± 0.29 for unexposed and RMF-exposed bacteriophages, respectively.  相似文献   

4.
The putative primase gene and other genes associated with the Sfi21-prototype genome replication module are highly conserved in Streptococcus thermophilus bacteriophages. Expression of antisense RNAs complementary to the putative primase gene (pri3.1) from S. thermophilus phage kappa 3 provided significant protection from kappa 3 and two other Sfi21-type phages. Expression of pri3.10-AS, an antisense RNA that covered the entire primase gene, reduced the efficiency of plaquing (EOP) of kappa 3 to 3 x 10(-3) and reduced its burst size by 20%. Mutant phages capable of overcoming antisense inhibition were not recovered. Thirteen primase-specific antisense cassettes of different lengths (478 to 1,512 bp) were systematically designed to target various regions of the gene. Each cassette conferred some effect, reducing the EOP to between 0.8 and 3 x 10(-3). The largest antisense RNAs (1.5 kb) were generally found to confer the greatest reductions in EOP, but shorter (0.5 kb) antisense RNAs were also effective, especially when directed to the 5' region of the gene. The impacts of primase-targeted antisense RNAs on phage development were examined. The expression of pri3.10-AS resulted in reductions in target RNA abundance and the number of phage genomes synthesized. Targeting a key genome replication function with antisense RNA provided effective phage protection in S. thermophilus.  相似文献   

5.
The appearance of lytic bacteriophage against newly introduced starter strains used during commercial cheese manufacture occurs rapidly, and their origin is not well understood. In this study, members of the group N streptococci were examined for the presence of bacteriophage restriction and modification systems. Two streptococcal phages from Streptococcus cremoris TR and Streptococcus lactis C2 (phage designations tr and c2) showed restricted lytic development on S. cremoris 799 and KH, respectively. Efficiency of plaquing was 1.9 × 10−7 for tr plaqued on 799 and 2.1 × 10−7 for c2 plaqued on KH. After passage through the restrictive hosts, these phages demonstrated high lytic ability for formerly restrictive hosts. Stress of the restrictive host strains at temperatures of 40 to 50°C resulted in a significant increase in the efficiency of plaquing of restricted bacteriophages. Elevated temperatures are encountered during commercial cheese manufacture. The results suggested that the temporary loss of host restriction activity with the resulting modification of nonspecific bacteriophage may contribute directly to the appearance of lytic phage against new starter strains.  相似文献   

6.
The coat protein subunit of the RNA bacteriophage ZIK/1 has a molecular weight of 12100 and does not contain histidine, methionine and cysteine. The amino acid composition of the coat protein is different from that of other RNA bacteriophage coat proteins. Bacteriophage ZIK/1 belongs to a class of RNA bacteriophages distinct from the f2 type, which lack histidine in their coat proteins, and the Qβ type, which lack histidine and methionine. Bacteriophage ZIK/1 RNA is an efficient template in the Escherichia coli cell-free system producing coat protein as the major product and a number of non-coat proteins. This result is similar to that obtained with RNA from f2-type bacteriophages. It is probable that the genomes of RNA bacteriophages are structurally similar and that differences between the types of RNA bacteriophage arise from minor differences in RNA sequence.  相似文献   

7.
A Thermus thermophilus selector strain for production of thermostable and thermoactive α-galactosidase was constructed. For this purpose, the native α-galactosidase gene (agaT) of T. thermophilus TH125 was inactivated to prevent background activity. In our first attempt, insertional mutagenesis of agaT by using a cassette carrying a kanamycin resistance gene led to bacterial inability to utilize melibiose (α-galactoside) and galactose as sole carbohydrate sources due to a polar effect of the insertional inactivation. A Gal+ phenotype was assumed to be essential for growth on melibiose. In a Gal background, accumulation of galactose or its metabolite derivatives produced from melibiose hydrolysis could interfere with the growth of the host strain harboring recombinant α-galactosidase. Moreover, the AgaT strain had to be Kms for establishment of the plasmids containing α-galactosidase genes and the kanamycin resistance marker. Therefore, a suitable selector strain (AgaT Gal+ Kms) was generated by applying integration mutagenesis in combination with phenotypic selection. To produce heterologous α-galactosidase in T. thermophilus, the isogenes agaA and agaB of Bacillus stearothermophilus KVE36 were cloned into an Escherichia coli-Thermus shuttle vector. The region containing the E. coli plasmid sequence (pUC-derived vector) was deleted before transformation of T. thermophilus with the recombinant plasmids. As a result, transformation efficiency and plasmid stability were improved. However, growth on minimal agar medium containing melibiose was achieved only following random selection of the clones carrying a plasmid-based mutation that had promoted a higher copy number and greater stability of the plasmid.  相似文献   

8.
9.
Chi (χ, 5'-GCTGGTGG) is a recombinator in RecA- and RecBC-mediated recombination in Escherichia coli. In vegetative recombination between two bacteriophage lambda strains, one with and the other without Chi (a+χ+b- x a-χob+), the χ-containing recombinant (a-χ+b -) is less abundant than the non-χ-containing recombinant (a+χob+). Previously this was taken was evidence for nonreciprocality of χ-stimulated exchange. This inequality, however, is now seen to result from an event at cos (λ's packaging origin) that both activates Chi and initiates DNA packaging. An event at rightward cos leads to activation of leftward χ on the same chromosome for an exchange to its left. From the resulting circulating dimer (—cos-a+o-b +-cos-a -+-b-—), the cos that activated χ is more likely to be used for rightward packaging initiation than is the cos from the other parent. Consistent with this coupling model is "biased packaging" in λ carrying two cos sites per monomer genome. When their maturation is dependent on dimerization by χ-stimulated exchange, the phage particles result more often from packaging from the cos that activates χ than from packaging from the other cos. Since Chi activation and packaging can be uncoupled, we infer that some early and reversible step in packaging activates χ. A strong candidate for this step is a double-strand break at cos that provides an oriented entry site for a recombinase.  相似文献   

10.
The lactose-H+ symport protein (LacS) of Streptococcus thermophilus has a carboxyl-terminal regulatory domain (IIALacS) that is homologous to a family of proteins and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in various organisms, of which IIAGlc of Escherichia coli is the best-characterized member. On the basis of these similarities, it was anticipated that IIALacS would be able to perform one or more functions associated with IIAGlc, i.e., carry out phosphoryl transfer and/or affect other catabolic functions. The gene fragment encoding IIALacS was overexpressed in Escherichia coli, and the protein was purified in two steps by metal affinity and anion-exchange chromatography. IIALacS was unable to restore glucose uptake in a IIAGlc-deficient strain, which is consistent with a very low rate of phosphorylation of IIALacS by phosphorylated HPr (HPr~P) from E. coli. With HPr~P from S. thermophilus, the rate was more than 10-fold higher, but the rate constants for the phosphorylation of IIALacS (k1 = 4.3 × 102 M−1 s−1) and dephosphorylation of IIALacS~P by HPr (k−1 = 1.1 × 103 M−1 s−1) are still at least 4 orders of magnitude lower than for the phosphoryltransfer between IIAGlc and HPr from E. coli. This finding suggests that IIALacS has evolved into a protein domain whose main function is not to transfer phosphoryl groups rapidly. On the basis of sequence alignment of IIA proteins with and without putative phosphoryl transfer functions and the known structure of IIAGlc, we constructed a double mutant [IIALacS(I548E/G556D)] that was predicted to have increased phosphoryl transfer activity. Indeed, the phosphorylation rate of IIALacS(I548E/G556D) by HPr~P increased (k1 = 4.0 × 103 M−1 s−1) and became nearly independent of the source of HPr~P (S. thermophilus, Bacillus subtilis, or E. coli). The increased phosphoryl transfer rate of IIALacS(I548E/G556D) was insufficient to complement IIAGlc in PTS-mediated glucose transport in E. coli. Both IIALacS and IIALacS(I548E/G556D) could replace IIAGlc, but in another function: they inhibited glycerol kinase (inducer exclusion) when present in the unphosphorylated form.  相似文献   

11.
Plasmid pSt04 of Streptococcus thermophilus contains a gene encoding a protein with homology to small heat shock proteins (A. Geis, H. A. M. El Demerdash, and K. J. Heller, Plasmid 50:53-69, 2003). Strains cured from the shsp plasmids showed significantly reduced heat and acid resistance and a lower maximal growth temperature. Transformation of the cloned shsp gene into S. thermophilus St11 lacking a plasmid encoding shsp resulted in increased resistance to incubation at 60°C or pH 3.5 and in the ability to grow at 52°C. A food-grade cloning system for S. thermophilus, based on the plasmid-encoded shsp gene as a selection marker, was developed. This approach allowed selection after transfer of native and recombinant shsp plasmids into different S. thermophilus and Lactococcus lactis strains. Using a recombinant plasmid carrying an erythromycin resistance (Emr) gene in addition to shsp, we demonstrated that both markers are equally efficient in selecting for plasmid-bearing cells. The average transformation rates in S. thermophilus (when we were selecting for heat resistance) were determined to be 2.4 × 104 and 1.0 × 104 CFU/0.5 μg of DNA, with standard deviations of 0.54 × 104 and 0.32 × 104, for shsp and Emr selection, respectively. When we selected for pH resistance, the average transformation rates were determined to be 2.25 × 104 and 3.8 × 103 CFU/0.5 μg of DNA, with standard deviations of 0.63 × 104 and 3.48 × 103, for shsp and Emr selection, respectively. The applicability of shsp as a selection marker was further demonstrated by constructing S. thermophilus plasmid pHRM1 carrying the shsp gene as a selection marker and the restriction-modification genes of another S. thermophilus plasmid as a functional trait.  相似文献   

12.
The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages.  相似文献   

13.
Restriction endonucleases EcoRI and HindIII generated fragments of T4 cytosine-containing DNA were inserted into bacteriophage vector λgtSuIII and plasmid vectors pMB9 and pBR313. Resulting clones were screened for hybridization with 32P labeled T4 tRNA. Recombinant bacteriophages and plasmids were isolated which contained a T4 fragment coding for T4 RNA species 1 and 2 and T4 tRNAArg. Selected λ-T4 hybrid bacteriophages were grown to high titer and their DNA analyzed by gel electrophoresis.  相似文献   

14.
Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1−/− chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1−/− cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3−/− DT40 cells. Rather, we observed an increased number of replication fibers in Chk1−/− cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1−/− cells are associated with the accumulation of aberrant replication fork structures.  相似文献   

15.
Ten previously reported lactose-positive (Lac+) transconjugants from Streptococcus lactis, S. cremoris, and S. lactis subsp. diacetylactis and one sucrose-positive (Suc+) transconjugant from S. lactis were examined for their sensitivity to prolate- and small isometric-headed bacteriophages. Four of the Lac+ transconjugants showed a 10- to 100-fold reduction in the efficiency of plating (EOP) as well as a reduced plaque size for the prolate phage c2 and were insensitive to the small isometric phage 712. A fifth Lac+ transconjugant demonstrated a similar reduced sensitivity to phage c2; however, this transconjugant was able to plaque phage 712, but with a reduced plaque size and EOP. The other five Lac+ transconjugants were sensitive to both c2 and 712 phages. The Suc+ transconjugant plaqued phage 712 with a reduced plaque size and EOP, but no reduction in plaque size or EOP was observed for phage c2. The Lac+ and reduced bacteriophage sensitivity (Rbs+) phenotypes were correlated with specific plasmids in the Lac+ transconjugants. As four of the Lac+ transconjugants exhibited a phenotypically indistinguishable Rbs+, one (AB001) was selected for further study. The Rbs+ in AB001 for both small isometric- and prolate-headed phages was not related to adsorption, and the reduced EOP for phage c2 was not related to the presence of a restriction and modification system. The latent period for phage c2 was unchanged, but the burst size was reduced 80%. The presence of the plasmid coding for Rbs+ retarded the lysis of a mitomycin C-induced prophage-containing strain. The Rbs+ mechanism appears to be abortive phage infection. This study supports previous observations that Rbs+ and conjugal transfer ability are physically linked among some group N streptococci. The results presented have implications in the identification of plasmids coding for Rbs+ and may also aid in explaining the dissemination of Rbs+ genes among lactic streptococci.  相似文献   

16.
To investigate phage-host interactions in Streptococcus thermophilus, a phage-resistant derivative (SMQ-301R) was obtained by challenging a Tn917 library of phage-sensitive strain S. thermophilus SMQ-301 with virulent phage DT1. Mutants of phages DT1 and MD2 capable of infecting SMQ-301 and SMQ-301R were isolated at a frequency of 10−6. Four host range phage mutants were analyzed further and compared to the two wild-type phages. Altogether, three genes (orf15, orf17, and orf18) contained point mutations leading to amino acid substitutions and were responsible for the expanded host range. These three proteins were also identified in both phages by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The results suggest that at least three phage structural proteins may be involved in phage-host interactions in S. thermophilus.  相似文献   

17.
Plasmids carrying the cohesive end region from temperate lactococcal bacteriophage ΦLC3 could be packaged in vivo by ΦLC3 and transduced into its host strain, Lactococcus lactis subsp. cremoris NCDO 1201. The transduction frequencies were between 10-4 and 10-3 transducing particles per PFU, depending on the size of the phage DNA insert. This transduction system is limited to only certain lactococcal strains. The ΦLC3 cohesive site region (cos) appears to play an important role in plasmid transduction.  相似文献   

18.
Ethyl methanesulfonate (EMS) killed wild-type Bacillus subtilis spores as rapidly as spores lacking small, acid-soluble proteins (SASP) of the α/β type (αβ spores), and 20% of the survivors had obvious mutations. A recA mutation increased the EMS sensitivity of wild-type and αβ spores similarly but reduced their mutagenesis; EMS treatment of dormant spores also resulted in the induction of RecA synthesis during spore germination. EMS generated similar levels of alkylated bases in wild-type and αβ spore DNAs, in purified DNA, or in DNA saturated with α/β-type SASP. Ethylene oxide (EtO) also generated similar levels of base alkylation in wild-type and αβ spore DNAs. These data indicate that EMS and EtO kill spores at least in part by DNA damage but that α/β-type SASP, which protect DNA against many types of damage, do not protect spore DNA from base alkylation.  相似文献   

19.
The cohesive termini of the DNA genome of the lactococcal bacteriophage c2 were directly sequenced and appeared to be complementary, non-symmetrical, 9-nucleotide single-stranded, 3′ extended DNAs, with the following sequence: 5′-GTTAGGCTT-3′ 3′-CAATCCGAA-5′. DNA located on either side of the cohesive ends was sequenced and several repeats and a region with the potential for a DNA bend were found. Previously sequenced cos regions of 13 other bacteriophages were also examined for similar sequence features. All of the bacteriophages from gram-positive hosts had 3′ extended DNA termini, in contrast to the bacteriophages from gram-negative hosts, which had 5′ extended DNA termini. All bacteriophages had a region of dyad symmetry close to the cohesive termini. A 7.3 kb DNA fragment of the c2 genome containing the cos sequences was cloned; transduction experiments demonstrated that these cloned sequences could act as a substrate for packaging enzymes of phage c2.  相似文献   

20.
Summary The strategy and implementation of a unique system for engineering bacteriophage resistant starter cultures ofLactococcus lactis employing antisense RNA is reviewed. As a necessary prerequisite for developing this system, we have cloned and sequenced a number of bacteriophage genes coding for minor and major structural proteins. In addition, we have also identified a series of genes whose function(s) is not known but their sequences appear to be conserved in a vast number of isolates. One of these latter sequences, designatedgp51C, codes for a 51-kDa protein which is extremely charged and shares some homology with yeast translation intiation factor. Resistance to a broad class of isometric bacteriophages has been achieved by expression of an antisense RNA targeted against, for example,gp51C. In the best case, expression of the antisensegp51C RNA results is a greater than 99% reduction in the total number of plaque forming units. Additional antisense RNA constructs directed against other bacteriophage genes, including the major capsid protein, also appear effective at inhibiting infection from 40–55% suggesting that this approach may prove useful for engineering a set of truly isogenic strains to be used in a starter culture rotation plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号