首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Non-invasive measurements of alkaloid metabolism in plant cell suspension cultures of a somatic hybrid from Rauvolfia serpentina Benth. ex Kurz and Rhazya stricta Decaisne were carried out. When cell samples were taken sequentially from a stock feeding experiment, measuring times for in vivo NMR of 40 min were sufficient for following conversions of alkaloids at the natural abundance of 13C. Degradation of ajmaline added to the cells at 1.6 mM concentration to raumacline could be monitored after 96 h on a standard 800 MHz NMR instrument (Avance 800). Feeding vinorine an intermediate of ajmaline biosynthesis at 1.8 mM showed with a 500 MHz CryoProbe that the alkaloid enters two metabolic routes. Vinorine is intracellularly transformed on route I through vellosimine and 10-deoxysarpagine into sarpagine. On route II, the alkaloid is converted by hydroxylation through vomilenine into the glucoside raucaffricine. Intracellular alkaloid concentrations of approximately 500 microM are measurable in vivo with cryogenic NMR technology.  相似文献   

2.
Strictosidine beta-D-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of approximately 2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SG's residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases.  相似文献   

3.
Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (Nbeta-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation.  相似文献   

4.
Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a “reverse-genetic” approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His6-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences reported in this article have been submitted to the Gene Bank under Accession No: AY766462.  相似文献   

5.
Raucaffricine (vomilenine-galactoside) was shown to be the major indole alkaloid of Rauwolfia serpentina Benth. cell suspension cultures grown in AP-medium (alkaloid production medium). Several grams of this glycoalkaloid can conveniently be isolated by RLCC (Rotation Locular Countercurrent Chromatography). A newly discovered enzyme efficiently converts the glycoalkaloid to its aglycon, vomilenine, which occupies a key function in the biosynthesis of ajmaline. This is the first demonstration of the occurrence of raucaffricine in Rauwolfia serpentina.  相似文献   

6.
Strictosidine synthases catalyze the formation of strictosidine, a key intermediate in the biosynthesis of a large variety of monoterpenoid indole alkaloids. Efforts to utilize these biocatalysts for the preparation of strictosidine analogs have however been of limited success due to the high substrate specificity of these enzymes. We have explored the impact of a protein engineering approach called circular permutation on the activity of strictosidine synthase from the Indian medicinal plant Rauvolfia serpentina. To expedite the discovery process, our study departs from the usual process of creating a random protein library, followed by extensive screening. Instead, a small, focused library of circular permutated variants of the six bladed β-propeller protein was prepared, specifically probing two regions which cover the enzyme active site. The observed activity changes suggest important roles of both regions in protein folding, stability and catalysis.  相似文献   

7.
Strictosidine synthase is a central enzyme involved in the biosynthesis of almost all plant monoterpenoid indole alkaloids. Strictosidine synthase from Rauvolfia serpentina was heterologously expressed in Escherichia coli. Crystals of the purified recombinant enzyme have been obtained by the hanging-drop technique at 303 K with potassium sodium tartrate tetrahydrate as precipitant. The crystals belong to the space group R3 with cell dimensions of a=b=150.3 A and c=122.4 A. Under cryoconditions (120 K), the crystals diffract to about 2.95 A.  相似文献   

8.
Delineation of the biochemical pathway leading to the antiarrhythmic Rauvolfia alkaloid ajmaline has been an important target in biosynthetic research for many years. The biosynthetic sequence starting with tryptamine and the monoterpene secologanin consists of about 10 different steps. Most of the participating enzymes have been detected and characterized previously, except those catalyzing the reduction of the intermediate vomilenine. A novel NADPH-dependent enzyme that reduces the intermediate has been isolated from Rauvolfia serpentina cell suspension cultures. Vomilenine reductase (M(r )43 kDa, temp opt 30 degrees C, pH opt 5.7-6.2), saturates the indolenine double bond of vomilenine with stereospecific formation of 2beta(R)-1,2-dihydrovomilenine. The described detection, enrichment and properties of the reductase not only closes a gap in ajmaline biosynthesis but is also a prerequisite for overexpressing the protein heterologously for final clarification of its molecular properties.  相似文献   

9.
10.
Abstract

Insight into the structure and inhibition mechanism of O-β-d-glucosidases by deoxa-pyranosylamine type inhibitors is provided by X-ray analysis of complexes between raucaffricine and strictosidine glucosidases and N-(cyclohexylmethyl)-, N-(cyclohexyl)- and N-(bromobenzyl)-β-d-gluco-1,5-deoxa-pyranosylamine. All inhibitors anchored exclusively in the catalytic active site by competition with appropriate enzyme substrates. Thus facilitated prospective elucidation of the binding networks with residues located at <3.9?Å distance will enable the development of potent inhibitors suitable for the production of valuable alkaloid glucosides, raucaffricine and strictosidine, by means of synthesis in Rauvolfia serpentina cell suspension cultures.  相似文献   

11.
Vinorine synthase is an acetyltransferase that occupies a central role in the biosynthesis of the antiarrhythmic monoterpenoid indole alkaloid ajmaline in the plant Rauvolfia. Vinorine synthase belongs to the benzylalcohol acetyl-, anthocyanin-O-hydroxy-cinnamoyl-, anthranilate-N-hydroxy-cinnamoyl/benzoyl-, deacetylvindoline acetyltransferase (BAHD) enzyme superfamily, members of which are involved in the biosynthesis of several important drugs, such as morphine, Taxol, or vindoline, a precursor of the anti-cancer drugs vincaleucoblastine and vincristine. The x-ray structure of vinorine synthase is described at 2.6-angstrom resolution. Despite low sequence identity, the two-domain structure of vinorine synthase shows surprising similarity with structures of several CoA-dependent acyltransferases such as dihydrolipoyl transacetylase, polyketide-associated protein A5, and carnitine acetyltransferase. All conserved residues typical for the BAHD family are found in domain 1. His160 of the HXXXD motif functions as a general base during catalysis. It is located in the center of the reaction channel at the interface of both domains and is accessible from both sides. The channel runs through the entire molecule, allowing the substrate and co-substrate to bind independently. Asp164 points away from the catalytic site and seems to be of structural rather than catalytic importance. Surprisingly, the DFGWG motif, which is indispensable for the catalyzed reaction and unique to the BAHD family, is located far away from the active site and seems to play only a structural role. Vinorine synthase represents the first solved protein structure of the BAHD superfamily.  相似文献   

12.
Vinorine synthase (EC 2.3.1.160) catalyses the acetyl-CoA- or CoA-dependent reversible formation of the alkaloids vinorine (or 11-methoxy-vinorine) and 16-epi-vellosimine (or gardneral). The forward reaction leads to vinorine, which is a direct biosynthetic precursor along the complex pathway to the monoterpenoid indole alkaloid ajmaline, an antiarrhythmic drug from the Indian medicinal plant Rauvolfia serpentina. Based on partial peptide sequences a cDNA clone was isolated and functionally expressed in Escherichia coli. The Km values of the native enzyme for gardneral and acetyl-CoA were determined to be 7.5 and 57 microM. The amino acid sequence of vinorine synthase has highest level of identity (28-31%) to that of Papaver salutaridinol acetyltransferase, Fragaria alcohol acyltransferase, and Catharanthus deacetylvindoline acetyltransferase involved in morphine, flavor, and vindoline biosynthesis, respectively. Vinorine synthase is a novel member of the BAHD superfamily of acyltransferases. Site-directed mutagenesis of 13 amino acid residues provided clear evidence that both, His160 and Asp164 of the consensus sequence HxxxD belong to the catalytic center. The mutations also showed that an amino acid triad is not characteristic of vinorine synthase. The experiments demonstrated the importance of the conserved motif SxL/I/VD near the N-terminus and the consensus sequence DFGWG near the C-terminal.  相似文献   

13.
The biosynthetic pathway leading to the monoterpenoid indole alkaloid ajmaline in Rauvolfia serpentiin serpentina is one of the most studied in the field of natural product biosynthesis. Ajmaline has a complex structure which is based on a six-membered ring system harbouring nine chiral carbon atoms. There are about fifteen enzymes involved, including some involving the side reactions of the ajmaline biosynthetic pathway. All enzymes exhibit pronounced substrate specificity. In the recent years isolation and sequencing of their cDNAs has allowed a detailed sequence analysis and comparison with functionally related and occasionally un-related enzymes. Site-directed mutations of several of the ajmaline-synthesizing enzymes have been performed and their catalytic residues have been identified. Success with over-expression of the enzymes was an important step for their crystallization and structural analysis by X-ray crystallography. Crystals with sufficient resolution were obtained from the major enzymes of the pathway. Strictosidine synthase has a 3D-structure with a six-bladed β-propeller fold the first time such a fold found in the plant kingdom. Its ligand complexes with tryptamine and secologanin, as well as structure-based sequence alignment, indicate a possible evolutionary relationship to several primary sequence-unrelated structures with this fold. The structure of strictosidine glucosidase was determined and its structure has as a (β/α)8 barrel fold. Vinorine synthase provides the first 3D structure of a member of BAHD enzyme super-family. Raucaffricine glucosidase involved in a side-route of ajmaline biosynthesis has been crystallized. The ajmaline biosynthetic pathway is an outstanding example where many enzymes 3D-structure have been known and where there is a real potential for protein engineering to yield new alkaloid.  相似文献   

14.
The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of approximately 2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler-type reaction and represents a novel six-bladed beta-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed beta-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.  相似文献   

15.
The biosynthesis of the anti-arrhythmic alkaloid ajmaline is catalysed by more than 10 specific enzymes. In this multistep process polyneuridine aldehyde esterase (PNAE) catalyses a central reaction by transforming polyneuridine aldehyde into epi-vellosimine, which is the immediate precursor for the synthesis of the ajmalane skeleton. PNAE was purified from cell suspension cultures of Rauvolfia serpentina. The N-terminal sequence and endoproteinase LysC fragments of the purified protein were used for primer design and for the amplification of specific PCR products leading to the isolation of PNAE-encoding cDNA from a R. serpentina library. The PNAE cDNA was fused with a C-terminal His-tag, expressed in Escherichia coli and purified to homogeneity using Ni-affinity chromatography. The pure enzyme shows extraordinary substrate specificity, completely different to other esterases. Sequence alignments indicate that PNAE is a new member of the alpha/beta hydrolase super family.  相似文献   

16.
Strictosidine synthase (STR; EC 4.3.3.2) plays a key role in the biosynthesis of monoterpenoid indole alkaloids by catalyzing the Pictet-Spengler reaction between tryptamine and secologanin, leading exclusively to 3alpha-(S)-strictosidine. The structure of the native enzyme from the Indian medicinal plant Rauvolfia serpentina represents the first example of a six-bladed four-stranded beta-propeller fold from the plant kingdom. Moreover, the architecture of the enzyme-substrate and enzyme-product complexes reveals deep insight into the active centre and mechanism of the synthase highlighting the importance of Glu309 as the catalytic residue. The present review describes the 3D-structure and function of R. serpentina strictosidine synthase and provides a summary of the strictosidine synthase substrate specificity studies carried out in different organisms to date. Based on the enzyme-product complex, this paper goes on to describe a rational, structure-based redesign of the enzyme, which offers the opportunity to produce novel strictosidine derivatives which can be used to generate alkaloid libraries of the N-analogues heteroyohimbine type. Finally, alignment studies of functionally expressed strictosidine synthases are presented and the evolutionary aspects of sequence- and structure-related beta-propeller folds are discussed.  相似文献   

17.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

18.
The cDNA clone for strictosidine synthase, the enzyme which catalyzes the stereospecific condensation of tryptamine with secologanin to form the key intermediate in indole alkaloid biosynthesis, strictosidine, has been identified with a synthetic oligodeoxynucleotide hybridization probe in a lambda gt11 cDNA library of cultured cells of Rauvolfia serpentina. The DNA has been sequenced, revealing an open reading frame of 1032 base pairs encoding 344 amino acids. The sequence of 60 nucleotides in the 5'-flanking region has been determined by primer extension analysis. The encoded protein has been expressed in E. coli DH5 as detected by immunoblotting of protein extracts with antibodies raised against the native enzyme.  相似文献   

19.
The terminal steps in the biosynthesis of the monoterpenoid indole alkaloids vindoline and minovincinine are catalyzed by separate acetyl coenzyme A-dependent O-acetyltransferases in Madagascar periwinkle (Catharanthus roseus G. Don). Two genes were isolated that had 63% nucleic acid identity and whose deduced amino acid sequences were 78% identical. Active enzymes that were expressed as recombinant His-tagged proteins in Escherichia coli were named minovincinine-19-O-acetyltransferase (MAT) and deacetylvindoline-4-O-acetyltransferase (DAT) because they catalyzed the 19-O-acetylation of indole alkaloids such as minovincinine and h?rhammericine and the 4-O-acetylation of deacetylvindoline, respectively. Kinetic studies showed that the catalytic efficiency of recombinant MAT (rMAT) was very poor compared with that of recombinant DAT (rDAT), whose turnover rates for Acetyl-coenzyme A and deacetylvindoline were approximately 240- and 10,000-fold greater than those of rMAT. Northern-blot analyses showed that MAT is expressed in cortical cells of the root tip, whereas DAT is only expressed in specialized idioblast and laticifer cells within light exposed tissues like leaves and stems. The coincident expression of trytophan decarboxylase, strictosidine synthase, and MAT within root cortical cells suggests that the entire pathway for the biosynthesis of tabersonine and its substituted analogs occurs within these cells. The ability of MAT to catalyze the 4-O-acetylation of deacetylvindoline with low efficiency suggests that this enzyme, rather than DAT, is involved in vindoline biosynthesis within transformed cell and root cultures, which accumulate low levels of this alkaloid under certain circumstances.  相似文献   

20.
Indole alkaloids are widely distributed secondary metabolites that exhibit a broad range of pharmacological activities. They are synthesized through plant biosynthetic pathways involving complex enzyme activities and regulatory strategies. Since many compounds of indole alkaloids are structurally too complex to be manufactured economically by chemical synthesis, they have to be isolated from naturally grown or cultivated plants. Therefore, the biotechnological production of high-value plant secondary metabolites in cultivated cells or transgenic plants is potentially an attractive alternative. The present review describes the regulation of indole alkaloids biosynthesis, as well as their pharmacological functions in plants such as anti-microbes, anti-inflammatory and anti-tumor. Furthermore, it discusses different strategies by which the genetic engineering of indole alkaloids biosynthesis through the reconstruction of the pathway achieves high production of specific compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号