首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background  

Two approaches to understanding growth during the cell cycle are single-cell studies, where growth during the cell cycle of a single cell is measured, and cell-culture studies, where growth during the cell cycle of a large number of cells as an aggregate is analyzed. Mitchison has proposed that single-cell studies, because they show variations in cell growth patterns, are more suitable for understanding cell growth during the cell cycle, and should be preferred over culture studies. Specifically, Mitchison argues that one can glean the cellular growth pattern by microscopically observing single cells during the division cycle. In contrast to Mitchison's viewpoint, it is argued here that the biological laws underlying cell growth are not to be found in single-cell studies. The cellular growth law can and should be understood by studying cells as an aggregate.  相似文献   

4.
The relationship between cellular metabolism and the cell cycle machinery is by no means unidirectional. The ability of a cell to enter the cell cycle critically depends on the availability of metabolites. Conversely, the cell cycle machinery commits to regulating metabolic networks in order to support cell survival and proliferation. In this review, we will give an account of how the cell cycle machinery and metabolism are interconnected. Acquiring information on how communication takes place among metabolic signaling networks and the cell cycle controllers is crucial to increase our understanding of the deregulation thereof in disease, including cancer.  相似文献   

5.
Gwen E. Dressing 《Steroids》2009,74(7):573-576
Multiple laboratories have investigated progesterone receptor (PR) involvement in breast cancer cell cycle progression. There is now a growing body of evidence demonstrating complex interactions between PR and cell cycle regulatory proteins. Here we review the current literature linking PR to cell cycle control and discuss gaps in the current knowledge. A more complete understanding of the relationships between PR and cell cycle regulatory molecules may reveal additional avenues for prevention and treatment of steroid receptor positive breast cancers.  相似文献   

6.
Abs produced by B lymphocytes play an essential role in humoral immunity against pathogens. This response is dependent upon the extent of genome replication, which in turn allows clonal expansion of Ag-specific B cell precursors. Thus, there is considerable interest in understanding how naive B cells commit to genome replication following Ag challenge. The BCR is a key regulator of B cell growth responses in the bone marrow and the periphery. The importance of identifying BCR-coupled signaling networks and their cell cycle targets is underscored by the recognition that aberrant cell cycle control can lead to lymphoproliferative disorders or lymphoid malignancies. This review focuses on recent progress toward understanding the function of cyclin D2 in cell cycle control, and in the development of murine B lymphocytes.  相似文献   

7.
The ultimate destiny of a cell to undergo division, differentiation, survival, and death results from an intricate balance between multiple regulators including oncogenes, tumor suppressor genes, and cell cycle associated proteins. Deregulation of the cell cycle machinery switches the phenotype from a normal cell to a cancerous cell. Fundamental alterations of tumor suppressor genes may result in an unregulated cell cycle with the accumulation of mutations and eventual neoplastic transformation. As such, one may define cancer as a genetic disease of the cell cycle. In this review, we will emphasize our current understanding of how the cell cycle machinery maintains cellular homeostasis by studying the consequences of its deregulation.  相似文献   

8.
9.
10.
由高通量微阵列技术产生的数据集可以用于解释生物系统基因调控的未知机制.生物过程是动态的,所以很有必要关注某些条件下特异的基因调控子网络.细胞周期是一个基本的细胞过程,识别酵母的细胞周期特异调控子网是理解细胞周期过程的基础,并且有助于揭示其他细胞条件的基因调控机理.使用一个基因表达微分方程模型(GEDEM),从静态网络中识别了动态的细胞周期相关调控关系.与已经报道的细胞周期相关调控相互作用相比,该方法识别了更多的真实存在的条件特异调控关系,取得了比当前的方法更好的性能.在大数据集上,GEDEM 识别了具有高敏感性和特异性的调控子网.组合调控的深入分析显示,条件特异调控子网的转录因子之间的相关性呈现出比静态网络中转录因子相关性更强,这说明条件特异网络比静态网络更加接近真实情况.另外,GEDEM 方法还识别更多潜在的共调控转录因子.  相似文献   

11.
Leland H. Hartwell, Paul M. Nurse et R. Timothy Hunt just received the Nobel price for their discovery of the molecular components of the cell cycle and cell cycle checkpoints. This review is an update of the molecular networks driving the cell cycle and its regulation, and of the importance of this knowledge for understanding the mechanisms driving oncogenesis and therapeutic developments.  相似文献   

12.
Thirty exponential cell divisions after fertilization would produce the number of cells in a baby mouse, but would not make a mouse. Sophisticated controls govern the cell cycle during development. These controls appear to play a central role in sculpting biological form. Rapid advances in our understanding of the machinery that drives the cell cycle provide a foundation for investigation of the molecular nature of cell cycle control in development. In this article, I emphasize that the design of the cell cycle machinery provides numerous inputs for regulation. I hope that the emphasis I have chosen will avert a tendency towards a narrow perception of cell cycle control.  相似文献   

13.
Global assays of gene expression and protein stability during the Caulobacter crescentus cell cycle reveal that a surprisingly large fraction of the genome and proteome is affected as cells grow and divide. These studies are an important step toward understanding how the cell cycle is controlled in prokaryotes.  相似文献   

14.
Cell cycle checkpoints constitute a network of signal transduction mechanisms to monitor DNA damage and replication and thereby regulate progression through the cell cycle. A series of events is triggered in cells upon DNA damage. Here we describe a framework for the understanding of the functions of the core components involved in the cell cycle response to DNA damage and the relevance to the origin of cancer.  相似文献   

15.
In common with all eukaryotic cells, trypanosomes must coordinate a complex series of morphogenetic events both temporally and spatially during the cell cycle. The structural and molecular cues that synchronise these events in trypanosomes have started to be elucidated, and intriguingly although similarities to cell cycle events in other eukaryotes can be identified, trypanosomes have also evolved novel solutions to the common challenges faced by dividing eukaryotic cells. Although cellular morphology is clearly pivotal for successful progression through the trypanosome cell cycle, most cytological studies to date have focused exclusively on procyclic form trypanosomes. These studies provide an excellent framework for understanding cell cycle events in trypanosomes, however recent data indicates that profound differences might exist between different life cycle stages in relation to the regulation of cell cycle and cytokinesis.  相似文献   

16.
Green light for the cell cycle   总被引:21,自引:0,他引:21  
Inzé D 《The EMBO journal》2005,24(4):657-662
In recent years, considerable progress has been made in unraveling the control mechanisms operating on the plant cell cycle and most of the key regulators have now been identified, including cyclin-dependent kinases (CDKs), cyclins, CDK-inhibitory proteins, the WEE kinase and proteins of the retinoblastoma-related protein (RBR)/E2F/DP pathway. The review discusses recent developments in our understanding of the plant cell cycle machinery and highlights the role of the cell cycle in plant development.  相似文献   

17.
Cell death and cell cycle progression are two sides of the same coin, and these two different phenomenons are regulated moderately to maintain the cellular homeostasis. Tumor is one of the disease states produced as a result of the disintegrated regulation and is characterized as cells showing an irreversible progression of cell cycle and a resistance to cell death signaling. Several investigations have been performed for the understanding of cell death or cell cycle, and cell death research has remarkably progressed in these 10 years. Caspase is a nomenclature referring to ICE/CED-3 cysteine proteinase family and plays a central role during cell death. Recently, several investigations raised some possible hypotheses that caspase is also involved in cell cycle regulation. In this issue, therefore, we review the molecular basis of cell death and cell cycle regulated by caspase in tumor, especially hepatocellular carcinoma cells.  相似文献   

18.
19.
Genetic links between deregulation of the cell cycle and cancer are well established. There have been significant recent developments both in our understanding of the molecular mechanisms that control cell cycle progression and in methods for protein structure determination at atomic resolution. These advances have allowed the rational design of small molecules that modulate the cell cycle by competing for sites of protein-protein or protein-ATP interactions. There is considerable optimism that these compounds, a selection of which are here reviewed, will become clinically significant drugs.  相似文献   

20.
The stable differentiation of cells into other cell types typically involves dramatic reorganization of cellular structures and functions. This often includes remodeling of the cell cycle and the apparatus that controls it. Here we review our understanding of the role and regulation of cell cycle control elements during cell differentiation in the yeast, Saccharomyces cerevisiae. Although the process of differentiation may be more overtly obvious in metazoan organisms, those systems are by nature more difficult to study at a mechanistic level. We consider the relatively well-understood mechanisms by which mating-type switching and the pheromone-induced differentiation of gametes are coupled to the cell cycle as well as the more obscure mechanisms that govern the remodeling of the cell cycle during meiosis and filamentous growth. In some cases, the cell cycle is a primary stimulus for differentiation whereas, in other cases, the signals that promote differentiation alter the cell cycle. Thus, despite relative simplicity of these processes in yeast, the nature of the interplay between the cell cycle and differentiation is diverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号