首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highest specific activity of beta-N-acetylglucosaminidase (beta-NAG) was found in the different parts of the epididymis, where the activity seemed to be partly in secretory and partly in non-secretory, tissue-bound form. Epididymal spermatozoa also contained moderate beta-NAG activity. The beta-NAG was separated by chromatofocussing and anion exchange chromatography with HPLC into multiple forms with distinct pI values (8.0-4.0). The cauda epididymidis, ampulla and the seminal vesicles formed the major secretory sources of the high beta-NAG activity in bull seminal plasma. The major secretory forms of beta-NAG in caput and cauda epididymidis showed distinct elution profiles. In the fractionation with gel filtration on Sepharose 6B, the beta-NAG activities derived from bull testis and caput epididymidis had smaller molecular weights than did the secretory enzymes in seminal plasma, seminal vesicle secretion and cauda epididymidis. Maximum activity of all beta-NAG isoenzymes was observed at pH 5.0. They were almost totally inactivated at 60 degrees C and about 75-80% of the activity was lost at 55 degrees C. All the isoenzymes were strongly inhibited by thiol reagents but not with other metal ions and chelating agents. Histochemical studies showed a strong granular (lysosomal) reaction for beta-NAG in basal cells and basal parts of the principal cells in all but the initial segment of the epididymis. An apical (secretory) reaction was prominent in the distal caput and corpus as well as in distal cauda. After the distal caput the luminal sperm mass became increasingly mixed with a beta-NAG-positive material. The epithelial cells of the ampulla and seminal vesicle displayed a moderate apical (secretory) reaction.  相似文献   

2.
alpha-L-Fucosidase (EC 3.2.1.51) activity was studied in different reproductive organs, seminal plasma and spermatozoa of the bull. The highest specific activity of alpha-L-fucosidase was found in the epididymis. Gel filtration at pH 7.0 revealed two alpha-L-fucosidases (alpha-L-fucosidase I and alpha-L-fucosidase II) in most reproductive tissues, but seminal plasma, spermatozoa and epididymal cauda contained only form I. Fractionation at basic pH (pH 8.5) resulted in the elution of alpha-L-fucosidase as form II. Some differences were encountered in pH profiles and thermal stabilities of the two enzyme forms and they showed additional polymorphism after chromatofocusing. The comparison of enzyme profiles after fractionations suggests that cauda epididymidis is the main source of the seminal plasma activity in the bull.  相似文献   

3.
The distribution of beta-galactosidase activity was studied in different reproductive organs, seminal plasma and spermatozoa of the bull. The highest specific activity of beta-galactosidase was found in testis and in different parts of the epididymis, where the activity seemed to be partly in secretory (cauda secretion) and partly in non-secretory, bound form (caput to cauda epididymidis). Gel filtration on Sepharose 6B at pH 7.0 revealed two beta-galactosidase forms (GF-1, Mr approximately 500,000-600,000 and GF-2, Mr approximately 190,000-220,000) in reproductive organs and seminal plasma. The pH-optimum of both beta-galactosidase forms was about 3.75-4.75. Hg2+ and p-chloromercuribenzoate inhibited strongly these activities. Further, form GF-2 seemed to be slightly more sensitive to the thermal inactivation at 50-70 degrees C than form GF-1. In chromatofocusing beta-galactosidase activities in bull seminal plasma coeluted with those of the cauda epididymidis (pI-values 7.5-6.4). On the contrary, prostate, Cowper's gland, testis, ampulla and seminal vesicles had enzyme activities eluting at lower pI-values (6.3-4.2). Thus, the seminal plasma activity is mainly an indicator for the function of the epididymal cauda.  相似文献   

4.
A synthetic substrate (p-nitrophenyl-alpha-D-glucopyranoside) was used to measure the acid and neutral alpha-glucosidase activity in bull seminal plasma, spermatozoa and in homogenates of bull reproductive organs. Marked differences were observed in the activities of these enzymes in the various tissues studied. Epididymis and particularly its caput region contained the highest specific activity of acid alpha-glucosidase. The activity of neutral alpha-glucosidase was highest in testis and in different parts of the epididymis. Seminal plasma, spermatozoa and seminal vesicle secretion contained only the acid enzyme activity. After fractionation with anion exchange chromatography in HPLC (Mono Q) and chromatofocussing, acid alpha-glucosidase activity of seminal plasma was recovered in two fractions with different pI values. The corresponding activities were found in the secretion of seminal vesicles, which thus form the major secretory source of seminal plasma acid alpha-glucosidase. In the fractionation with gel filtration on Sepharose 6B, the acid alpha-glucosidase had a smaller molecular weight than did the neutral enzyme. In anion exchange chromatography and chromatofocussing the testicular and epididymal homogenates each contained two acid and two neutral isoenzymes. In both fractionations the elution pattern of acid alpha-glucosidase was clearly different from that of the enzymes in seminal plasma. The pH optimum of acid alpha-glucosidase ranged from 3.75 to 4.5 and that of the neutral enzyme from 6.5 to 7.0. The neutral activity was more sensitive to many divalent metal ions and differences were also observed in the response of the enzymes to different concentrations of turanose and KCl.  相似文献   

5.
Wistar male rats received an intratesticular injection (at 114 and 265 days of age) of 3 mg of partially purified bull seminal ribonuclease (AS RNase) or saline. It was found that sexual behaviour (initiation of copulation as well as copulatory behavioural pattern) of experimental males was not changed, but the ability of these males to fertilize females was evidently suppressed. In addition to significantly lower weights of testes and epididymis, inhibition of seminiferous epithelium development (aspermatogenesis) associated with the absence of spermatozoa was determined in cauda epididymidis in experimental animals. However, Leydig cells remained without changes. Plasma testosterone levels of AS RNase treated males were not altered in comparison with the controls. Thus AS RNase specifically impaired spermatogenesis but did not influence androgen action and sexual behaviour.  相似文献   

6.
A protein which showed high affinity for calcium ions was isolated from bull seminal vesicle secretion and seminal plasma. Its calcium-binding activity depended on the ionic strength and pH of the medium. The dissociation constant was 7-7 X 10(-7) M and there were 14 binding sites per protein molecule. The molecular weight of calcium-binding protein from bull seminal vesicle secretion, estimated by the gel filtration method, was 110,000. The protein may be involved in the regulation of the calcium ion level in seminal plasma.  相似文献   

7.
5'-Nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) occurs in bull seminal plasma in multiple forms. The heterogeneity does not reflect the existence of true isoenzymes, but is due to the association of the enzyme with particulate material and to molecular aggregation phenomena. Addition of detergents to native bull seminal plasma prevents molecular aggregation, solubilizes the particulate form of the enzyme, and results in the appearance of a single molecular form of the enzyme. Enzyme purification can be achieved after three chromatographic steps which involve negative adsorption of 5'-nucleotidase activity on DEAE-Sephadex A-50 followed by two affinity chromatographies on concanavalin A-Sepharose 4B and ADP-agarose. The enzyme appears to be a dimeric glycoprotein. Some properties of the enzyme, including substrate specificity and the effects of hydrogen ion concentration and of various divalent cations, are reported.  相似文献   

8.
Seminal ribonuclease (AS RNase) is synthesized in the epididymis, ampullary glands and seminal vesicles of sexually mature bulls. During sexual maturation of Czech red-spotted bulls it first begins to be synthesized in the seminal vesicles and ampullary glands, after the age of 20 weeks. At this age practically none is synthesized in the epididymis. As soon as the epithelial cells of the seminal vesicles start to synthesize the enzyme and secretion of the fluids of this organ begins, synthesis per ml fluid is almost the same as in sexually mature bulls. AS RNase synthesis in the cauda epididymidis begins after the age of 27 weeks and is individually variable. AS RNase synthesis in the reproductive organs depends on the testosterone concentration in the blood plasma of the bull.  相似文献   

9.
10.
B Sheid  L Pedrinan 《Biochemistry》1975,14(20):4357-4361
The existence of a DNA-dependent protein methylase activity without any concomitant DNA methylase activity was demonstrated in bull seminal plasma. The enzyme utilized S-adenosyl-L-methionine as a methyl donor, and endogenous seminal plasma protein as the substrate. There was no demonstrable enzyme activity when the seminal plasma was preheated at 100 degrees for 10 min, or when the enzyme reaction mixture was incubated at 4 degrees. The protein methylase required a heterologous DNA source, had optimal activity at pH 8.1, and was enhanced in the presence of Mg2+, NH4+, and reduced glutathione. After the methylated protein product was separated from DNA by extraction with 0.2 M HCl, the incorporated radioactivity was shown to be totally solubilized by incubating the protein either with Pronase or 1 M NaOH, while RNase and DNase had no effect. Approximately 70% of the enzymatically synthesized amino acids in the protein product were tentatively identified as O-methylated amino acid ethers by virtue of their elution from a Dowex 50 H+ column with 0.2 M pyridine, and their stability to acid and base hydrolysis. The partially purified methylated product was shown by Sephadex G-50 chromatography to consist of three distinct radioactive proteins with molecular weights of approximately 21,000, 15,000, and 10,000.  相似文献   

11.
We have employed high-performance liquid chromatography on reversed phase columns to analyse the major basic proteins from bull seminal plasma. The proteins were separated preparatively and characterized with respect to molecular mass, amino-acid composition as well as by means of immunodiffusion against specific antisera. The following proteins could be identified: bull seminal proteinase inhibitor II (BUSI II), two seminal RNAases, the seminal antimicrobial protein and proteolytic fragments, derived from it, and a hitherto unknown protein P6 of molecular mass 20 000 Da. Another unknown protein, P5, found to be formed during preparation of the basic protein fraction turned out to be a proteolytic fragment of protein P6 with a molecular mass of 8 750 Da for the polypeptide chain. Antisera against the isolated proteins were raised in rabbits and their specificity established. Single radial immunodiffusion was used to determine the concentration of the above basic proteins in bull seminal plasma: BUSI II (0.25 mg/ml), seminal RNAases (6.5 mg/ml) and protein P6 (2.9 mg/ml).  相似文献   

12.
13.
Acid and neutral alpha-mannosidase activities were studied in the bull reproductive tissues, isolated spermatozoa, epididymal and seminal vesicle secretion and seminal plasma. The acid enzyme in the seminal plasma mainly derived from the epididymal secretion, while the neutral one was enriched in the sperm cells. The latter activity in the seminal plasma appears to be due to an enzyme released from the cytoplasmic droplets in the epididymis. The acid enzyme had a molecular weight of 220,000-320,000, pI 7.3-6.0 and an optimum at pH 4.0. It was sensitive to swainsonine but was stimulated by Zn2+. The neutral enzyme had a molecular weight of 360,000-460,000, pI 5.4-4.7 and showed double optima at pH 5.5 and 6.0-7.0. It was resistant to swainsonine but was markedly activated by Co2+ or Fe2+. The neutral enzyme was also more sensitive to thermal inactivation than the acid one.  相似文献   

14.
15.
5'-Nucleotidase of bull seminal plasma has been spin labeled with the sulfhydryl reagent 3-maleimidoproxyl. ESR analysis reveals the presence of two classes of labeled sites. The first is characterized by a long spin label rotational correlation time, from which a protein diameter of about 70 A can be estimated, under the assumption of a spherical shape. The second class is characterized by a shorter correlation time of the covalently bound spin labels and binding of the substrate sodium thymidine 5'-monophosphate to 5'-nucleotidase results in a reduction of their mobility. Low-temperature ESR analysis shows that no paramagnetic ion is bound to the native protein.  相似文献   

16.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

17.
Only 2–5% of seminal fluid is composed of spermatozoa, while the rest is seminal plasma. The seminal plasma is a rich cocktail of organic and inorganic compounds including hormones, serving as a source of nutrients for sperm development and maturation, protecting them from infection and enabling them to overcome the immunological and chemical environment of the female reproductive tract. In this review, a survey of the hormones found in human seminal plasma, with particular emphasis on reproductive hormones is provided. Their participation in fertilization is discussed including their indispensable role in ovum fertilization. The origin of individual hormones found in seminal plasma is discussed, along with differences in the concentrations in seminal plasma and blood plasma. A part of review is devoted to methods of measurement, emphasising particular instances in which they differ from measurement in blood plasma. These methods include separation techniques, overcoming the matrix effect and current ways for end-point measurement, focusing on so called hyphenated techniques as a combination of chromatographic separation and mass spectrometry. Finally, the informative value of their determination as markers of male fertility disorders (impaired spermatogenesis, abnormal sperm parameters, varicocele) is discussed, along with instances where measuring their levels in seminal plasma is preferable to measurement of levels in blood plasma.  相似文献   

18.
We isolated the major protein with apparent molecular weight, Mr, 15,000-16,000 from seminal plasma as well as from seminal vesicle secretion of bull and proved by amino acid analysis and tryptic peptide mapping that the two proteins were identical. An antiserum against this major protein was employed to quantitate and identify the major protein in seminal plasma as well as in seminal vesicle secretion. The antiserum did not cross-react with proteins from bovine or human plasma or follicular fluid, respectively. Cell-free translation of poly(A+)RNA isolated from seminal vesicle tissue resulted in formation of one major species with apparent Mr 18,000. Using the anti-major protein antiserum, this major species was specifically immuno absorbed. We thus provided evidence that the major protein component of bull seminal plasma is a secretory protein of seminal vesicles. Furthermore, it appeared that the isolated major protein may be closely related to the protein PDC109, purified from bull seminal plasma and sequenced by Esch et al. (Biochem. Biophys. Res. Commun. 113, 861-867 (1983).  相似文献   

19.
Glycerophosphorylcholine is the only phosphate-containing compound of bull or rabbit seminal plasma that is eluted by water from a semimicro column of Dowex 1-acetate. This observation has permitted development of a rapid method for glycerophosphorylcholine analysis.  相似文献   

20.
The three acidic acrosin inhibitors of bull seminal plasma, BUSI I A, BUSI I B1 and BUSI I B2 were compared by thin-layer chromatographic and high-performance liquid chromatographic fingerprint analyses of the tryptic digests prepared from their S-carboxymethylated derivatives. It was found that the inhibitors differ only in their N-terminal regions. The inhibitor BUSI I B1 has a blocked N-terminus due to a pyroglutamic-acid residue. This residue is substituted by glutamic acid in BUSI I B2. The third inhibitor, BUSI I A, is four residues shorter at the N-terminus than the two other inhibitors. A high-performance liquid chromatography-based method for the separation of the three inhibitor variants was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号