首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.  相似文献   

2.
Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV) encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs). Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1) degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.  相似文献   

3.
Nef is a viral regulatory protein of the human immunodeficiency virus (HIV) that has been shown to contribute to disease progression. Among its putative effects on T cell functions are the down-regulation of CD4 and major histocompatibility class I surface molecules. These effects occur in part via Nef interactions with intracellular signaling molecules. We sought to better characterize the effects of HIV Nef on T cell function by examining chemotaxis in response to stromal cell-derived factor-1alpha (SDF-1alpha) as well as CXCR4 signaling molecules. Here, we report the novel observation that HIV Nef inhibited chemotaxis in response to SDF-1alpha in both Jurkat T cells and primary peripheral CD4+ T lymphocytes. Our data indicate that HIV Nef altered critical downstream molecules in the CXCR4 pathway, including focal adhesion kinases. These findings suggest that HIV Nef may blunt the T cell response to chemokines. Because T lymphocyte migration is an integral component of host defense, HIV Nef may thereby contribute to the pathogenesis of AIDS.  相似文献   

4.
Huang MB  Jin LL  James CO  Khan M  Powell MD  Bond VC 《Journal of virology》2004,78(20):11084-11096
The HIV-1 Nef protein was analyzed for apoptotic structural motifs that interact with the CXCR4 receptor and induce apoptosis in CD4(+) lymphocytes. Two apoptotic motifs were identified. One centered on Nef amino acids (aa) 50 to 60, with the overlapping 20-mer peptides retaining about 82% of the activity of the full Nef protein. The second centered on aa 170 to 180, with the overlapping 20-mer peptides retaining about 30% of the activity of the full protein. Significant apoptotic abilities were observed for 11-mer motif peptides spanning aa 50 to 60 and aa 170 to 180, with a scrambled version of the 11-mer motif peptide corresponding to aa 50 to 60 showing no apoptotic ability. Hallmarks of apoptosis, such as the formation of DNA ladders and caspase activation, that were observed with the full-length protein were equally evident upon exposure of cells to these motif peptides. A CXCR4 antibody and the endogenous ligand SDF-1alpha were effective in blocking Nef peptide-induced apoptosis as well as the physical binding of a fluorescently tagged Nef protein, while CCR5 antibodies were ineffective. The CXCR4-negative cell line MDA-MB-468 was resistant to the apoptotic peptides and became sensitive to the apoptotic peptides upon transfection with a CXCR4-expressing vector. A fluorescently tagged motif peptide and Nef protein displayed physical binding to CXCR4-transfected MDA-MB-468 cells, but not to CCR5-transfected cells. The removal of the apoptotic motif sequences from the full-length protein completely eliminated the ability of Nef to induce apoptosis. However, these modified Nef proteins still retained the ability to enhance viral infectivity. Thus, specific sequences in the Nef protein appear to be necessary for Nef protein-induced apoptosis as well as for physical interaction with CXCR4 receptors.  相似文献   

5.

Background

The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region.

Results

The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF??AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef??s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck.

Conclusion

Based on these findings, we propose that this highly conserved three amino acid VGF motif together with the acidic cluster and the proline-rich motif form a previously unrecognized amphipathic surface on Nef. This surface appears to be essential for the majority of Nef functions and thus represents a prime target for the pharmacological inhibition of Nef.  相似文献   

6.
HIV-1 and SIV Nef proteins downregulate cell surface CD4 and MHC class I (MHC-I) molecules of infected cells, which are necessary for efficient viral replication and pathogenicity. We previously reported that K144 in HIV-1 Nef is di-ubiquitinated, and K144R substitution impairs Nef-mediated CD4 downregulation. In this report, we extend the role of ubiquitination at this lysine residue from Nef-mediated CD4 downregulation to Nef-mediated MHC-I downregulation and from HIV Nef to SIV Nef. All HIV-1 Nef mutants that contain K144R substitution are inactive in MHC-I downregulation. Tested MHC-I alleles include HLA-ABC endogenously expressed and HLA-A2 exogenously expressed in Jurkat T cells. CD4 downregulation by SIV Nef involves K176 that aligns with K144 in HIV-1 Nef, as well as an N-terminal tyrosine motif Y28Y39 not present in HIV-1 Nef. Dual mutation at K176 and Y28Y39 completely impaired SIV Nef-mediated CD4 and MHC-I downregulation, whereas a single mutation at K176 or Y28Y39 did not. The involvement of tyrosine motif in SIV Nef-mediated CD4 and MHC-I downregulation prompted us to investigate a putative tyrosine motif (Y202Y/F203) in HIV-1 Nef that is conserved among HIV-1 species. Single mutation at the tyrosine motif Y202F203 in HIV-1 Nef (NA7) greatly impaired Nef-mediated CD4 downregulation, which is similar to what we observed previously with the single mutation at lysine K144. Thus, our study demonstrated that Nef-mediated receptor endocytosis involves the ubiquitination motif and tyrosine motif.  相似文献   

7.
Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV) and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x)6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.  相似文献   

8.
Chemokines are recognized as functionally important in many pathological disorders, which has led to increased interest in mechanisms related to the regulation of chemokine receptor (CKR) expression. Known mechanisms for regulating CKR activity are changes in gene expression or posttranslational modifications. However, little is known about CKR with respect to a third regulatory mechanism, which is observed among other seven-transmembrane receptor subfamilies, the concept of differential splicing or processing of heteronuclear RNA. We now report on the discovery of a variant human CKR, CXCR3, resulting from alternative splicing via exon skipping. The observed RNA processing entails a drastically altered C-terminal protein sequence with a predicted four- or five-transmembrane domain structure, differing from all known functional CKR. However, our data indicate that that this splice variant, which we termed CXCR3-alt, despite its severe structural changes still localizes to the cell surface and mediates functional activity of CXCL11.  相似文献   

9.
Lama J  Ware CF 《Journal of virology》2000,74(20):9396-9402
Human immunodeficiency virus (HIV) Nef downregulates the antigen recognition molecules major histocompatibility complex class I and CD4. Downregulation of surface CD4 by Nef relies on the ability of this viral protein to redirect the endocytic machinery to CD4. However, by redirecting the endocytic machinery, Nef may affect the internalization rates of other proteins. Here we show that Nef simultaneously enhances surface expression of the effector cytokines tumor necrosis factor (TNF) and LIGHT, leading to enhanced cytokine activity. A dileucine motif in Nef, which is essential for CD4 downregulation and is involved in the recruitment of adapter protein complexes by Nef, was required to increase surface levels of both cytokines. The physiological impact of the Nef-mediated interference with endocytosis was demonstrated by the fact that a TNF-responsive T-cell line chronically infected with HIV produced higher levels of p24 viral protein following expression of a Nef-green fluorescent protein (GFP) fusion protein. This enhancement was dependent on the levels of membrane-bound TNF, since it was abrogated by a recombinant soluble TNF receptor. Expression of Nef-GFP in human 293T cells reduced the endocytosis of LIGHT, whereas at the same time CD4 internalization was accelerated. Taken together, these results suggest that in infected cells Nef interferes with the internalization of these effector cytokines. By increasing TNF expression, Nef could accelerate disease progression in infected individuals. These findings may help explain the pleiotropic functions that Nef plays during infection and disease.  相似文献   

10.
Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef''s dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif–dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.  相似文献   

11.
To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7(+) vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, beta-COP. Moreover, we demonstrate that Nef contains two separable beta-COP binding sites. One site, an arginine (RXR) motif in the N-terminal alpha helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.  相似文献   

12.
To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, β-COP. Moreover, we demonstrate that Nef contains two separable β-COP binding sites. One site, an arginine (RXR) motif in the N-terminal α helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.  相似文献   

13.
Nef proteins of primate lentiviruses promote viral replication, virion infectivity, and evasion of antiviral immune responses by modulating signal transduction pathways and downregulating expression of receptors at the cell surface that are important for efficient antigen-specific responses, such as CD4, CD28, T-cell antigen receptor, and class I and class II major histocompatibility complex. Here we show that Nef proteins from diverse groups of primate lentiviruses which do not require the chemokine receptor CXCR4 for entry into target cells strongly downmodulate the cell surface expression of CXCR4. In contrast, all human immunodeficiency virus type 1 (HIV-1) and the majority of HIV-2 Nef proteins tested did not have such strong effects. SIVmac239 Nef strongly inhibited lymphocyte migration to CXCR4 ligand, the chemokine stromal derived factor 1 (SDF-1). SIVmac239 Nef downregulated CXCR4 by accelerating the rate of its endocytosis. Downmodulation of CXCR4 was abolished by mutations that disrupt the constitutively strong AP-2 clathrin adaptor binding element located in the N-terminal region of the Nef molecule, suggesting that Nef accelerates CXCR4 endocytosis via an AP-2-dependent pathway. Together, these results point to CXCR4 as playing an important role in simian immunodeficiency virus and possibly also HIV-2 persistence in vivo that is unrelated to viral entry into target cells. We speculate that Nef targets CXCR4 to disrupt ordered trafficking of infected leukocytes between local microenvironments in order to facilitate their dissemination and/or impair the antiviral immune response.  相似文献   

14.
15.
HIV-1 Nef is a key factor for pathogenesis and is known to down-regulate functionally important molecules, including viral entry co-receptor CCR5 and CXCR4, from the surface of HIV-infected cells. Some of these Nef activities are mediated by the well-conserved proline-rich region of Nef, and this region is highly targeted by cytotoxic T lymphocytes (CTLs). In the present study, we asked whether Nef variants selected under CTL-mediated selective pressure in vivo may constrain these important Nef activities. The analysis of autologous nef sequences isolated from a cohort of total 235 subjects in Japan revealed that the subjects showing amino acid variations, such as Arg75Thr and Tyr85Phe, located within the proline-rich region were significantly over-represented by those having HLA-B*3501. CTL assays corroborated that these mutations conferred escape from HLA-B(?)3501-restricted CTLs. The Arg75Thr variant Nef selectively impaired CCR5, but not CXCR4, down-regulation activity from the cell surface; whereas the Tyr85Phe variant Nef affected neither CCR5 nor CXCR4 down-regulation activity. Moreover, the cells expressing the Arg75Thr variant Nef significantly impaired protection from superinfection by CCR5-tropic, but not CXCR4-tropic, viruses. These results highlighted the importance of certain Nef-specific CTLs in modulation of viral co-receptor down-regulation activity and protection from HIV-1 superinfection, providing us with additional insight into vaccine design.  相似文献   

16.
The Nef protein from the human immunodeficiency virus (HIV) induces CD4 cell surface downregulation by interfering with the endocytic machinery. It has been recently proposed that binding of HIV type 1 Nef to the beta subunit of COPI coatomers participated in the Nef-induced CD4 downregulation through recognition of a novel diacidic motif found in the C-terminal disordered loop of Nef (V. Piguet, F. Gu, M. Foti, N. Demaurex, J. Gruenberg, J. L. Carpentier, and D. Trono, Cell 97:63-73, 1999). We have mutated the glutamate residues which formed this motif in order to document this observation. Surprisingly, mutation of the diacidic sequence of Nef did not significantly affect its ability (i) to interact with beta-COP, (ii) to downregulate CD4 cell surface expression, and (iii) to address an integral resident membrane protein containing Nef as the cytoplasmic domain to the endocytic pathway. Our results indicate that these acidic residues are not involved in the connection of Nef with the endocytic machinery through binding to beta-COP. Additional studies are thus required to characterize the residues of Nef involved in the binding to beta-COP and to evaluate the contribution of this interaction to the Nef-induced perturbations of membrane trafficking.  相似文献   

17.
The chemokine stromal cell-derived factor 1 (SDF-1) is the natural ligand for CXC chemokine receptor 4 (CXCR4). SDF-1 inhibits infection of CD4+ cells by X4 (CXCR4-dependent) human immunodeficiency virus (HIV) strains. We previously showed that SDF-1 alpha interacts specifically with heparin or heparan sulfates (HSs). Herein, we delimited the boundaries of the HS-binding domain located in the first beta-strand of SDF-1 alpha as the critical residues. We also provide evidence that binding to cell surface heparan sulfate proteoglycans (HSPGs) determines the capacity of SDF-1 alpha to prevent the fusogenic activity of HIV-1 X4 isolates in leukocytes. Indeed, SDF-1 alpha mutants lacking the capacity to interact with HSPGs showed a substantially reduced capacity to prevent cell-to-cell fusion mediated by X4 HIV envelope glycoproteins. Moreover, the enzymatic removal of cell surface HS diminishes the HIV-inhibitory capacity of the chemokine to the levels shown by the HS-binding-disabled mutant counterparts. The mechanisms underlying the optimal HIV-inhibitory activity of SDF-1 alpha when attached to HSPGs were investigated. Combining fluorescence resonance energy transfer and laser confocal microscopy, we demonstrate the concomitant binding of SDF-1 alpha to CXCR4 and HSPGs at the cell membrane. Using FRET between a Texas Red-labeled SDF-1 alpha and an enhanced green fluorescent protein-tagged CXCR4, we show that binding of SDF-1 alpha to cell surface HSPGs modifies neither the kinetics of occupancy nor activation in real time of CXCR4 by the chemokine. Moreover, attachment to HSPGs does not modify the potency of the chemokine to promote internalization of CXCR4. Attachment to cellular HSPGs may co-operate in the optimal anti-HIV activity of SDF-1 alpha by increasing the local concentration of the chemokine in the surrounding environment of CXCR4, thus facilitating sustained occupancy and down-regulation of the HIV coreceptor.  相似文献   

18.
Prostate cancer (PCa) is the most commonly diagnosed cancer in men. The progression and invasion of PCa are normally mediated by the overexpression of chemokine receptors (CKRs) and the interaction between CKRs and their cognate ligands. We recently demonstrated that venom extracted from Walterinnesia aegyptia (WEV) either alone or in combination with silica nanoparticles (WEV+NP) mediated the growth arrest and apoptosis of breast cancer cells. In the present study, we evaluated the impact of WEV alone and WEV+NP on the migration, invasion, proliferation and apoptosis of prostate cancer cells. We found that WEV alone and WEV+NP decreased the viability of all cell types tested (PCa cells isolated from patient samples, PC3 cells and LNCaP cells) using an MTT assay. The IC50 values were determined to be 10 and 5 μg/mL for WEV alone and WEV+NP, respectively. WEV+NP decreased the surface expression of the CKRs CXCR3, CXCR4, CXCR5 and CXCR6 to a greater extent than WEV alone and subsequently reduced migration and the invasion response of the cells to the cognate ligands of the CKRs (CXCL10, CXCL12, CXCL13 and CXCL16, respectively). Using a CFSE proliferation assay, we found that WEV+NP strongly inhibited epidermal growth factor-mediated PCa cell proliferation. Furthermore, analysis of the cell cycle indicated that WEV+NP strongly altered the cell cycle of PCa cells and enhanced the induction of apoptosis. Finally, we demonstrated that WEV+NP robustly decreased the expression of anti-apoptotic effectors, such as B cell Lymphoma-2 (Bcl-2), B cell Lymphoma-extra large (Bcl-XL) and myeloid cell leukemia sequence-1 (Mcl-1), and increased the expression of pro-apoptotic effectors, such as Bcl-2 homologous antagonist/killer (Bak), Bcl-2-associated X protein (Bax) and Bcl-2-interacting mediator of cell death (Bim). WEV+NP also altered the membrane potential of mitochondria in the PCa cells. Our data reveal the potential of nanoparticle-sustained delivery of snake venom as effective treatments for prostate cancer.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important determinant of AIDS pathogenesis. We have previously reported that HIV-1 Nef is responsible for the induction of a severe AIDS-like disease in CD4C/HIV transgenic (Tg) mice. To understand the molecular mechanisms of this Nef-induced disease, we generated Tg mice expressing a mutated Nef protein in which the SH3 ligand-binding domain (P(72)XXP(75)XXP(78)) was mutated to A(72)XXA(75)XXQ(78). This mutation completely abolished the pathogenic potential of Nef, although a partial downregulation of the CD4 cell surface expression was still observed in these Tg mice. We also studied whether Hck, one of the effectors previously found to bind to this PXXP motif of Nef, was involved in disease development. Breeding of Tg mice expressing wild-type Nef on an hck(-/-) (knockout) background did not abolish any of the pathological phenotypes. However, the latency of disease development was prolonged. These data indicate that an intact PXXP domain is essential for inducing an AIDS-like disease in CD4C/HIV Tg mice and suggest that interaction of a cellular effector(s) with this domain is required for the induction of this multiorgan disease. Our findings indicate that Hck is an important, but not an essential, effector of Nef and suggest that another factor(s), yet to be identified, may be more critical for disease development.  相似文献   

20.
Human immunodeficiency virus type 1 Nef provides immune evasion by decreasing the expression of major histocompatibility complex class I (MHC-I) at the surfaces of infected cells. The endosomal clathrin adaptor protein complex AP-1 is a key cellular cofactor for this activity, and it is recruited to the MHC-I cytoplasmic domain (CD) in the presence of Nef by an uncharacterized mechanism. To determine the molecular basis of this recruitment, we used an MHC-I CD-Nef fusion protein to represent the MHC-I CD/Nef complex during protein interaction assays. The MHC-I CD had no intrinsic ability to bind AP-1, but it conferred binding activity when fused to Nef. This activity was independent of the canonical leucine-based AP-binding motif in Nef; it required residue Y320 in the MHC-I CD and residues E62-65 and P78 in Nef, and it involved the mu but not the gamma/sigma subunits of AP-1. The impaired binding of mutants encoding substitutions of E62-65 or P78 in Nef was rescued by replacing the Y320SQA sequence in the MHC-I CD with YSQL, suggesting that Nef allows the YSQA sequence to act as if it were a canonical mu-binding motif. These data identify the mu subunit of AP-1 (mu1) as the key target of the MHC-I CD/Nef complex, and they indicate that both Y320 in the MHC-I CD and E62-65 in Nef interact directly with mu1. The data support a cooperative binding model in which Nef functions as a clathrin-associated sorting protein that allows recognition of an incomplete, tyrosine-based mu-binding signal in the MHC-I CD by AP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号