首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to investigate the expression of nitric oxide synthase (NOS) isoforms in buffalo ovarian preantral (PFs), antral (AFs) and ovulatory (OFs) follicles (Experiment 1); effect of NO on in vitro survival and growth of PFs (Experiment 2) and NOS activity in immature oocytes by NADPH-diaphorase test (Experiment 3). In Experiment 1, NOS isoforms (neuronal, inducible and endothelial) were localized immunohistochemically; mRNA and protein expression was analyzed by semi-quantitative RT-PCR and western blot, respectively. In Experiment 2, PFs were isolated by micro-dissection method from buffalo ovaries and cultured in 0 (control), 10−3, 10−5, 10−7 and 10−9 M sodium nitroprusside (SNP). PFs were further cultured with 10−5 M SNP + 1.0 mM Nω-nitro-L-arginine methyl ester (L-NAME) or 1.0 μg/ml hemoglobin (Hb) to examine the reversible effect of SNP. Immunohistochemical studies demonstrated that inducible nitric oxide synthase (iNOS) immunoreactivity was predominantly localized in granulosa and theca cells whereas, neuronal (nNOS) and endothelial (eNOS) nitric oxide synthase in the theca, granulosa and cumulus cells of PFs, AFs and OFs. The amount of mRNA as well as protein of nNOS and eNOS was found similar between different stages of follicles. In contrast, higher level of iNOS mRNA was observed in OFs and protein in the AFs. Higher doses of SNP (10−3, 10−5, 10−7 M) inhibited (P < 0.05) while, lower dose of SNP (10−9 M) stimulated (P < 0.05) the survival, growth, and antrum formation of PFs. The inhibitory effects of SNP were reversed by Hb, while L-NAME was not found effective. In conclusion, expression of NOS isoforms mRNA and protein in PFs, AFs, and OFs and NOS enzyme activity in immature follicular oocytes suggest a role for NO during ovarian folliculogenesis in buffalo. NO plays a dual role on growth and survival of PFs depending on its concentration in the culture medium.  相似文献   

2.
The objective was to evaluate mitochondrial distribution, and its relationship to meiotic development, in canine oocytes during in vitro maturation (IVM) at 48, 72, and 96 h, compared to those that were non-matured or in vivo matured (ovulated). The distribution of active mitochondria during canine oocyte maturation (both in vitro and in vivo) was assessed with fluorescence and confocal microscopy using MitoTracker Red (MT-Red), whereas chromatin configuration was concurrently evaluated with fluorescence microscopy and DAPI staining. During IVM, oocytes exhibited changes in mitochondrial organization, ranging from a fine uniform distribution (pattern A), to increasing clustering spread throughout the cytoplasm (pattern B), and to a more perinuclear and cortical distribution (pattern C). Pattern A was mainly observed in germinal vesicle (GV) oocytes (96.4%), primarily in the non-matured group (P < 0.05). Pattern B was seen in all ovulated oocytes which were fully in second metaphase (MII), whereas in IVM oocytes, ∼64% were pattern B, irrespective of duration of culture or stage of nuclear development (P > 0.05). Pattern C was detected in a minor percentage (P < 0.05) of oocytes (mainly those in first metaphase, MI) cultured for 72 or 96 h. In vitro matured oocytes had a minor percentage of pattern B (P < 0.05) and smaller mitochondrial clusters in IVM oocytes than ovulated oocytes, reaching only 4, 11, and 17% of MII at 48, 72, and 96 h, respectively. Thus, although IVM canine oocytes rearranged mitochondria, which could be related to nuclear maturation, they did not consistently proceed to MII, perhaps due to incomplete IVM, confirming that oocytes matured in vitro were less likely to be competent than those matured in vivo.  相似文献   

3.
4.
As an important biological messenger, nitric oxide (NO) exhibits a wide range of effects during physiological and pathophysiological processes, including mammalian oocyte meiotic maturation. The present study investigated whether NO derived from two nitric oxide synthase (NOS) isoforms, inducible NOS (iNOS) or endothelial NOS (eNOS), is involved in the meiotic maturation of porcine oocytes. Meanwhile, the cumulus cells' function in meiotic maturation and their interaction with oocyte development and degeneration were also investigated using cumulus-enclosed oocytes (CEOs) and denuded oocytes (DOs). Different inhibitors for NOS were supplemented to the medium. Cumulus expansion, cumulus cell DNA fragmentation and oocyte meiotic resumption were evaluated 48 h after incubation. Aminoguanidine (AG), a selective inhibitor for iNOS, suppressed cumulus expansion and inhibited CEOs to resume meiosis (p < 0.05), but did not inhibit cumulus cell DNA fragmentation. Both Nomega-nitro-L-arginine (L-NNA) and Nomega-nitro-L-arginine methyl ester (L-NAME), inhibitors for both iNOS and eNOS, delayed cumulus expansion, inhibited cumulus cell DNA fragmentation and inhibited CEOs to resume meiosis. Such effects were not seen in DOs. These results indicate that iNOS-derived NO is necessary for cumulus expansion and meiotic maturation by mediating the function of the surrounding cumulus cells, and eNOS-derived NO is also involved in porcine meiotic maturation.  相似文献   

5.
Growth hormone (GH) in rhesus macaque in vitro oocyte maturation (IVM) has been shown to increase cumulus expansion and development of embryos to the 9–16 cell stage in response to 100 ng/ml recombinant human GH (r‐hGH) supplementation during IVM. Although developmental endpoints for metaphase II (MII) oocytes and embryos are limited in the macaque, gene expression analysis can provide a mechanism to explore GH action on IVM. In addition, gene expression analysis may allow molecular events associated with improved cytoplasmic maturation to be detected. In this study, gene expression of specific mRNAs in MII oocytes and cumulus cells that have or have not been exposed to r‐hGH during IVM was compared. In addition, mRNA expression was compared between in vitro and in vivo‐matured metaphase II (MII) oocytes and germinal vesicle (GV)‐stage oocytes. Only 2 of 17 genes, insulin‐like growth factor 2 (IGF2) and steroidogenic acute regulator (STAR), showed increased mRNA expression in MII oocytes from the 100 ng/ml r‐hGH treatment group compared with other IVM treatment groups, implicating insulin‐like growth factor (IGF) and steroidogenesis pathways in the oocyte response to GH. The importance of IGF2 is notable, as expression of IGF1 was not detected in macaque GV‐stage or MII oocytes or cumulus cells. Mol. Reprod. Dev. 77: 353–362, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Freezing unfertilized oocytes is an option for females without a partner, either to preserve their fertility prior to sterilizing cancer treatment or for social reasons. Our study considered whether it is best to freeze immature human oocytes at the germinal vesicle (GV) stage, prior to in vitro maturation (IVM) or at metaphase-II (M-II), after IVM. Sibling GV-stage oocytes from stimulated ICSI cycles were allocated to freezing either prior to (n = 109) or after (n = 107) IVM. Cumulus-free oocytes were cryopreserved using a choline-substituted slow-freezing protocol and matured in a defined medium, with analysis of chromatin, microtubules, and microfilaments by three-dimensional imaging. Cryopreserved oocytes were compared with oocytes matured in vitro but never frozen (n = 114). Survival was similar between oocytes frozen before or after IVM (69.7% vs. 70.5%). Polar body extrusion after IVM was lower in oocytes frozen at the GV stage versus those matured and then frozen (51.3% vs. 75.7%) or not frozen (75.4%). Stratification by patient age (<36 and ?36 year) showed no difference in oocyte survival or maturation. Oocytes frozen as GVs showed elevated proportions of spontaneous activation (with or without polar body), an effect augmented by patient age. Spindle and chromosome configurations were disrupted to similar extents in both groups of frozen oocytes, with no further detrimental effect of patient age. The length, width, and volume of bipolar M-II spindles were comparable in all three groups. When frozen as GVs, oocytes exhibited decreased maturation and increased spontaneous activation, suggesting that it is best to freeze oocytes at M-II.  相似文献   

7.
Oocyte maturation is pertinent to the success of in vitro maturation (IVM), which is used to overcome female infertility, and produced over 5000 live births worldwide. However, the quality of human IVM oocytes has not been investigated at single-cell proteome level. Here, we quantified 2094 proteins in human oocytes during in vitro and in vivo maturation (IVO) by single-cell proteomic analysis and identified 176 differential proteins between IVO and germinal vesicle oocytes and 45 between IVM and IVO oocytes including maternal effect proteins, with potential contribution to the clinically observed decreased fertilization, implantation, and birth rates using human IVM oocytes. IVM and IVO oocytes showed separate clusters in principal component analysis, with higher inter-cell variability among IVM oocytes, and have little correlation between mRNA and protein changes during maturation. The patients with the most aberrantly expressed proteins in IVM oocytes had the lowest level of estradiol per mature follicle on trigger day. Our data provide a rich resource to evaluate effect of IVM on oocyte quality and study mechanism of oocyte maturation.  相似文献   

8.
Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3–7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.  相似文献   

9.
Fetal baroreflex responsiveness increases in late gestation. An important modulator of baroreflex activity is the generation of nitric oxide in the brainstem nuclei that integrate afferent and efferent reflex activity. The present study was designed to test the hypothesis that nitric oxide synthase (NOS) isoforms are expressed in the fetal brainstem and that the expression of one or more of these enzymes is reduced in late gestation. Brainstem tissue was rapidly collected from fetal sheep of known gestational ages (80, 100, 120, 130, 145 days gestation and 1 day and 1 wk postnatal). Neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) mRNA was measured using real-time PCR methodology specific for ovine NOS isoforms. The three enzymes were measured at the protein level using Western blot methodology. In tissue prepared for histology separately, the cellular pattern of immunostaining was identified in medullae from late-gestation fetal sheep. Fetal brainstem contained mRNA and protein of all three NOS isoforms, with nNOS the most abundant, followed by iNOS and eNOS, respectively. nNOS and iNOS mRNA abundances were highest at 80 days' gestation, with statistically significant decreases in abundance in more mature fetuses and postnatal animals. nNOS and eNOS protein abundance also decreased as a function of developmental age. nNOS and eNOS were expressed in neurons, iNOS was expressed in glia, and eNOS was expressed in vascular endothelial cells. We conclude that all three isoforms of NOS are constitutively expressed within the fetal brainstem, and the expression of all three forms is reduced with advancing gestation. We speculate that the reduced expression of NOS in this brain region plays a role in the increased fetal baroreflex activity in late gestation.  相似文献   

10.
Increased vascular nitric oxide (NO) production has been implicated in the pathogenesis of the hyperdynamic circulation in liver cirrhosis. This study investigated the expression of three isoforms of NO synthase (NOS) in rat cirrhotic livers. Cirrhosis was induced by chronic bile duct ligation (BDL). NOS enzyme activity was assessed by L-citrulline generation. Competitive RT-PCR was performed to detect the mRNA levels of NOS. In situ hybridization was done to localize NOS mRNA. Protein expression of NOS was evaluated by Western blotting and immunohistochemistry. The L-citrulline assay showed that constitutive NOS (cNOS) enzymatic activity was decreased, while inducible NOS (iNOS) activity was increased in BDL livers. Both endothelial NOS (eNOS) and neuronal NOS (nNOS) mRNA were detected in BDL and sham rats, but with enhanced expression in BDL rats. eNOS protein was redistributed with less expression in sinusoidal endothelial cells, but the total levels in liver were not changed. nNOS was induced in hepatocytes of BDL rats, in contrast to only a weak signal observed around some blood vessels in sham livers. Intense mRNA and protein expression of iNOS was induced in livers of BDL rats and was localized in hepatocytes, with no or a negligible amount in control livers. In conclusion, iNOS was induced in cirrhotic liver with its activity increased. In contrast, cNOS activity was impaired, regardless of unchanged eNOS protein levels and enhanced nNOS expression. These results suggest that all three types of NOS have a role in cirrhosis, but their expression and regulation are different.  相似文献   

11.
Oocyte maturation is a complex process and a critical issue in assisted reproduction techniques (ART) in humans and other mammals. We used a sensitive 2‐D DIGE saturation labeling approach including an internal pooled standard for quantitative proteome profiling of immature versus in vitro matured bovine oocytes in six independent samples. The study comprised 48 2D gel images representing 24 DIGE experiments. From 250 ng sample analyzed per gel, quantitative analysis revealed an average of 2244 spots in pH 4–7 images and 1291 spots in pH 6–9 images. Thirty‐eight spots with different intensities were detected in total. Spots of a preparative gel from 2200 oocytes were identified by nano‐LC‐MS/MS analysis. The ten spots which could be unambiguously identified include the Ca2+‐binding protein translationally controlled tumor protein, enzymes of the Krebs and pentose phosphate cycles, clusterin, 14‐3‐3 ?, elongation factor‐1 gamma, and redox enzymes such as polymorphic forms of GST Mu 5 and peroxiredoxin‐3. The cellular distribution of two proteins was determined by confocal laser scanning microscopy. The interesting protein candidates identified by this study may help to improve the in vitro maturation process in order to increase the rate of successful in vitro fertilization and other ART in cattle and other mammals.  相似文献   

12.
In this study, we examined the effects of inhibitors of mitochondrial permeability transition (MPT), caspase activity, intracellular Ca2+ chelator and mitochondrial Ca2+ uniporter on survival assessed by morphological observation and in vitro maturation (IVM) of porcine vitrified germinal vesicle (GV) oocytes. When vitrified GV oocytes were matured only present in the IVM medium with an MPT inhibitor, cyclosporin A (CsA), the survival and IVM rates (36.1% and 26.8%, respectively) were significantly higher (P < 0.05) than those in the other vitrified groups (10.3–12.3% and 6.2–10.3%, respectively). However, Z-VAD-fmk (Z-VAD), a caspase inhibitor, did not improve the survival and IVM rates (11.7–21.6% and 8.5–155%, respectively). When BAPTA-AM, an intracellular Ca2+ chelator, was present in the IVM medium, the survival and IVM rates of vitrified GV oocytes (34.5–36.2% and 25.0–26.9%, respectively) were significantly higher (P < 0.05) than those in the absent vitrified groups (17.2–24.2% and 12.9–19.3%, respectively). When ruthenium red (RR), an inhibitor of mitochondrial Ca2+ uniporter, was present only in the IVM medium, the survival and IVM rates (54.5% and 39.4%, respectively) were significantly higher than those in the other vitrified groups (25.8–38.4% and 14.4–24.2%, respectively). Furthermore, blastocysts were successfully produced using porcine vitrified GV oocytes matured in the IVM medium with RR after in vitro fertilization.These results suggested that CsA, BAPTA-AM and RR but not Z-VAD have improved the survival and IVM rates of porcine vitrified GV oocytes.  相似文献   

13.
This study was undertaken to investigate the development of immature oocytes after their fusion with male somatic cells expressing red fluorescence protein (RFP). RFP‐expressing cells were fused with immature oocytes, matured in vitro and then parthenogenetically activated. Somatic nuclei showed spindle formation, 1st polar body extrusion after in vitro maturation and protruded the 2nd polar body after parthenogenetic activation. RFP was expressed in the resultant embryos; two‐cell stage and blastocysts. Chromosomal analysis showed aneuploidy in 81.82% of the resulting blastocysts while 18.18% of the resulting blastocysts were diploid. Among eight RFP‐expressing blastocysts, Xist mRNAs was detected in six while Sry mRNA was detected in only one blastocyst. We propose “prematuration somatic cell fusion” as an approach to generate embryos using somatic cells instead of spermatozoa. The current approach, if improved, would assist production of embryos for couples where the male partner is sterile, however, genetic and chromosomal analysis of the resultant embryos are required before transfer to the mothers.  相似文献   

14.
15.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (45.7% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36h to 42h (83.6% vs. 96.7%, p<0.05). However, no statistical difference were observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.8%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

16.
We determined the cellular mRNA expression of all intrarenal nitric oxide (NO)-producing NO synthase (NOS) isoforms, endothelial NOS (eNOS) and neuronal NOS (nNOS) and inducible NOS (iNOS) in kidneys from wild-type mice (WT) and immune deficient Toll-like receptor 4 (TLR4) mutant mice, during normal physiological conditions and during a short-term (6–16 h) endotoxic condition caused by systemically administered lipopolysaccaride (LPS). Investigations were performed by means of in situ hybridization and polymerase chain reaction amplification techniques. In WT, LPS altered the expression rate of all intrarenal NOS isoforms in a differentiated but NOS-isoform coupled expression pattern, with iNOS induction, and up- and down-regulation of the otherwise constitutively expressed NOS isoforms, e.g. eNOS and nNOS and an iNOS isotype. In TLR4 mutants, LPS caused none or a lowered iNOS induction, but altered the expression rate of the constitutive NOS isoforms. It is concluded that the intrarenal spatial relation of individual NOS-isoforms and their alteration in expression provide the basis for versatile NO-mediated renal actions that may include local interactions between NOS isoforms and their individual NO-target sites, and that the NOS-isoform dependent events are regulated by TLR4 during endotoxic processes. These regulatory mechanisms are likely to participate in different pathophysiological conditions affecting NO-mediated renal functions.  相似文献   

17.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (47.5% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36 to 42 h (83.6% vs. 96.7%, p<0.05). However, no statistical difference was observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.3%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

18.
Somatic cell nuclear transfer (SCNT), combined with genome modification techniques, is a very pow-erful tool for agriculture, medicine and fundamental research on basic biological mechanisms. The effi-ciency of producing transgenic animals is greatly prom…  相似文献   

19.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (45.7% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36h to 42h (83.6% vs. 96.7%, p<0.05). However, no statistical difference were observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.8%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

20.
The ability to recover and cryopreserve oocytes from postmortem ovaries of endangered or wildlife species holds tremendous potential for conservation using assisted reproductive technologies. The objective of this study was to assess the in vitro meiotic maturation of chousingha (four-horned antelope) oocytes following vitrification using open pulled straw (OPS) method. The average number of oocytes recovered per ovary was 65.6. The proportion of oocytes that matured was significantly lower in vitrified oocytes (29.4%) when compared with fresh oocytes (69.3%). The study provides evidence that it is possible to cryopreserve immature oocytes by vitrification collected from the ovaries of chousingha at postmortem and also demonstrates that these cryopreserved oocytes retain their potential to undergo in vitro meiotic maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号