首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In cultured rat vascular smooth muscle cells (VSMC), inducible nitric oxide synthase (iNOS) expression evoked by interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha was greatly enhanced in hypoxia (2% O(2)), compared to in normoxia. In contrast, iNOS induction by interferon-gamma, lipopolysaccharide or their combination was barely influenced by hypoxia. These results indicate that iNOS induction is regulated by hypoxia in different manners, depending on the stimuli in VSMC. Nitric oxide (NO) production in response to stimulation with interferon-gamma plus lipopolysaccharide was significantly decreased in hypoxia, due to a decrease in the concentration of O(2) as a substrate. In contrast, the level of NO production in hypoxia was almost the same as that in normoxia when the cells were stimulated by IL-1beta. In addition, cGMP increased in response to IL-1beta in hypoxia to a level comparable to that in normoxia. Thus, it seems that the IL-1beta-induced expression of iNOS is up-regulated in hypoxia to compensate for a decrease in the enzyme activity due to the lower availability of O(2) as a substrate, and consequently a sufficient amount of NO is produced to elevate cGMP to an adequate level. In addition, the IL-1beta-induced synthesis of tetrahydrobiopterin, a cofactor for iNOS, was also greatly stimulated by hypoxia in VSMC.  相似文献   

2.
Exposure of RINm5F cells to interleukin-1beta and to several chemical NO donors such as sodium nitroprusside (SNP), SIN-1 and SNAP induce apoptotic events such as the release of cytochrome c from mitochondria, caspase 3 activation, Bcl-2 downregulation and DNA fragmentation. SNP exposure led to transient activation of soluble guanylate cyclase (sGC) and prolonged protein kinase G (PKG) activation but apoptotic events were not attenuated by inhibition of the sGC/PKG pathway. Prolonged activation of the cGMP pathway by exposing cells to the dibutyryl analogue of cGMP for 12 h induced both apoptosis and necrosis, a response that was abolished by the PKG inhibitor KT5823. These results suggest that NO-induced apoptosis in the pancreatic beta-cell line is independent of acute activation of the cGMP pathway.  相似文献   

3.
Treatment of mesangial cells with interleukin 1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) has been shown to induce nitric oxide (NO) synthase with subsequent autocrine stimulation of soluble guanylate cyclase (Pfeilschifter and Schwarzenbach, 1990, FEBS Lett. 273, 185-187). Here we report that transforming growth factor beta 2 (TGF beta 2) dose-dependently inhibits IL-1 beta- and TNF alpha-stimulated cGMP formation in mesangial cells. Half-maximal inhibition is observed at concentrations of 0.4 and 0.06 ng/ml of TGF beta 2, respectively. Maximum inhibition of cGMP formation over a 24 h period requires the presence of TGF beta 2 during the first 4 h of induction. In addition, the inhibitory effect of TGF beta 2 on cytokine-induced cGMP formation is not affected by the potent cyclo-oxygenase inhibitor indomethacin, thus excluding prostaglandins as mediators.  相似文献   

4.
Treatment of mesangial cells with recombinant human interleukin 1 beta (IL-1 beta) or recombinant human tumor necrosis factor alpha (TNF alpha) dose-dependently increased cGMP formation. Both IL-1 beta and TNF alpha-stimulated formation of cGMP occurred after a initial lag period of 4 to 8 hours. Treatment of cells with actinomycin D, cycloheximide or dexamethason completely abolished cytokine-induced cGMP formation. Furthermore, the guanylate cyclase inhibitor Methylene blue completely blocked IL-1 beta- and TNF alpha-stimulated cGMP generation. NG-mono-methyl-L-arginine attenuated IL-1 beta- and TNF alpha-induced cGMP production, an effect that was reversed by L-arginine.  相似文献   

5.
6.
Treatment of mesangial cells with interleukin 1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) has been shown to increase cGMP formation, most probably due to induction of nitric oxide synthase. Here we report that maximum stimulation of cGMP formation over a 24-h period required the presence of IL-1 beta or TNF alpha during the first 18 h of induction. N4-monomethyl-L-arginine (L-NMMA) was a potent inhibitor of cytokine-induced cGMP formation while N4-nitro-L-arginine (L-NNA) was less active. Formation of nitric oxide was detected in the cytosol of cytokine-treated mesangial cells by activation of purified soluble guanylate cyclase and was stimulated by tetrahydrobiopterin, but not by calcium calmodulin. Treatment of cells with IL-1 beta or TNF alpha markedly attenuated the contractile response to a subsequent challenge with angiotensin II. Furthermore, conditioned medium from IL-1 beta-treated cells increased cGMP in untreated control cells.  相似文献   

7.
The trace element zinc affects several aspects of immune function, such as the release of proinflammatory cytokines from monocytes. We investigated the role of cyclic nucleotide signaling in zinc inhibition of LPS-induced TNF-alpha and IL-1beta release from primary human monocytes and the monocytic cell line Mono Mac1. Zinc reversibly inhibited enzyme activity of phosphodiesterase-1 (PDE-1), PDE-3, and PDE-4 in cellular lysate. It additionally reduced mRNA expression of PDE-1C, PDE-4A, and PDE-4B in intact cells. Although these PDE can also hydrolyze cAMP, only the cellular level of cGMP was increased after incubation with zinc, whereas cAMP was found to be even slightly reduced due to inhibition of its synthesis. To investigate whether an increase in cGMP alone is sufficient to inhibit cytokine release, the cGMP analogues 8-bromo-cGMP and dibutyryl cGMP as well as the NO donor S-nitrosocysteine were used. All three treatments inhibited TNF-alpha and IL-1beta release after stimulation with LPS. Inhibition of soluble guanylate cyclase-mediated cGMP synthesis with LY83583 reversed the inhibitory effect of zinc on LPS-induced cytokine release. In conclusion, inhibition of PDE by zinc abrogates the LPS-induced release of TNF-alpha and IL-1beta by increasing intracellular cGMP levels.  相似文献   

8.
Most studies have shown that the immune and inflammatory actions of interleukin-1 alpha and beta exhibit the identical biological spectrums of activity with similar dose-response curves. We have previously demonstrated that interleukin-1 beta suppresses follicle-stimulating hormone-induced differentiation of ovarian granulosa cells. In these experiments, we show that although the human recombinant preparations of interleukin-1 alpha and beta exhibit a similar directional inhibition of ovarian granulosa cell differentiation, there is a significant difference in the dose-response relationships between the two forms. Interleukin-1 beta was 31 times and 18 times more potent than interleukin-1 alpha in suppressing follicle-stimulating hormone-induced luteinizing hormone receptor development and progesterone secretion, respectively, from rat granulosa cells. However, there was no difference in the dose-dependent activities of interleukin-1 alpha and beta in stimulating murine thymocyte proliferation. These results suggest that interleukin-1 beta is more effective in influencing ovarian granulosa cell function than interleukin-1 alpha.  相似文献   

9.
cDNA of bovine cGMP-dependent protein kinase (cGMP kinase) isozymes I alpha and I beta differ only in their amino-terminal domains (amino acids 1-89 and 1-104, respectively). Each recombinant isozyme (rI alpha and rI beta) was transiently expressed in COS-7 cells and its properties were compared with the cGMP kinase isozymes P-I and P-II purified from bovine trachea. The subunit of P-I, P-II, rI alpha and rI beta had a molecular mass of about 75 kDa. rI alpha and rI beta had S20,W values of 7.6 and 7.2, respectively, indicating that they were present as dimeric holoenzymes. Immunostaining with specific antibodies showed that P-I and rI alpha, and P-II and rI beta, were immunologically indistinguishable. P-I, P-II, rI alpha and rI beta had the same catalytic activity. However, rI alpha and rI beta were half-maximally activated at 0.1 microM and 1.3 microM cGMP, and 0.3 microM and 12 microM 8-bromoguanosine 3',5'-(cyclic)phosphate (Br8-cGMP), respectively. P-I and P-II had a similar shift in their apparent KA values. P-I and rI alpha bound 2 mol cGMP/mol subunit to high-affinity (site 1) and low-affinity (site 2) cGMP-binding sites. The exchange rates were 0.005-0.009 min-1 for site 1 and 3.7 min-1 for site 2. In contrast, P-II and rI beta bound and rI beta bound 2 mol cGMP/mol enzyme subunit at only two low-affinity binding sites (site 2) with k-1 values of 0.92 min-1 and 4.8 min-1. These results suggest that a change from the I alpha amino-terminal domain to that of I beta increases the apparent KA value for cGMP 10-fold by altering the binding properties of binding site 1. The differential expression of the cGMP kinase isozymes could be an important mechanism in vivo to dampen the effect of long-term elevation of cGMP level.  相似文献   

10.
Group IIa phospholipase A(2) (GIIa PLA(2)) is released by some cells in response to interleukin-1beta. The purpose of this study was to determine whether interleukin-1beta would stimulate the synthesis and release of GIIa PLA(2) from cardiomyocytes, and to define the role of p38 MAPK and cytosolic PLA(2) in the regulation of this process. Whereas GIIa PLA(2) mRNA was not identified in untreated cells, exposure to interleukin-1beta resulted in the sustained expression of GIIa PLA(2) mRNA. Interleukin-1beta also stimulated a progressive increase in cellular and extracellular GIIa PLA(2) protein levels and increased extracellular PLA(2) activity 70-fold. In addition, interleukin-1beta stimulated the p38 MAPK-dependent activation of the downstream MAPK-activated protein kinase, MAPKAP-K2. Treatment with the p38 MAPK inhibitor, SB202190, decreased interleukin-1beta stimulated MAPKAP-K2 activity, GIIa PLA(2) mRNA expression, GIIa PLA(2) protein synthesis, and the release of extracellular PLA(2) activity. Infection with an adenovirus encoding a constitutively active form of MKK6, MKK6(Glu), which selectively phosphorylates p38 MAPK, induced cellular GIIa PLA(2) protein synthesis and the release of GIIa PLA(2) and increased extracellular PLA(2) activity 3-fold. In contrast, infection with an adenovirus encoding a phosphorylation-resistant MKK6, MKK6(A), did not result in GIIa PLA(2) protein synthesis or release by unstimulated cardiomyocytes. In addition, infection with an adenovirus encoding MKK6(A) abrogated GIIa PLA(2) protein synthesis and release by interleukin-1beta-stimulated cells. These results provide direct evidence that p38 MAPK activation was necessary for interleukin-1beta-induced synthesis and release of GIIa PLA(2) by cardiomyocytes.  相似文献   

11.
Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and carbon monoxide, resulting in cGMP production. Recent studies indicate that NO and cGMP influence ovarian functions. However, little information is available regarding the ovarian expression of sGC. The present study examined sGC alpha(1) and beta(1) subunit protein levels in the ovary during postnatal development, gonadotropin-induced follicle growth, ovulation, and luteinization as well as in cultured rat granulosa cells. In postnatal rats, sGC alpha(1) subunit immunoreactivity was high in granulosa cells of primordial and primary follicles on Day 5 but low in granulosa cells of larger follicles on Days 10 and 19. Theca cells of developing follicles, but not stromal cells, also demonstrated moderate sGC alpha(1) immunoreactivity. In gonadotropin- treated immature rats, intense sGC alpha(1) subunit staining was similarly observed in granulosa cells of primordial and primary follicles, but such staining was low in granulosa cells of small antral follicles and undetectable in granulosa cells of large antral and preovulatory follicles. Following ovulation, corpora lutea expressed moderate sGC alpha(1) immunoreactivity. Similar ovarian localization and expression patterns were seen for sGC beta(1), indicating regulated coexpression of sGC subunits. Immunoblot analysis revealed no change in total ovarian sGC alpha(1) and beta(1) subunit protein levels during gonadotropin treatment. Similarly, no effect of FSH on sGC subunit protein levels was apparent in cultured granulosa cells. These findings indicate regulated, cell- specific patterns of sGC expression in the ovary and are consistent with roles for cGMP in modulating ovarian functions.  相似文献   

12.
Activated microglia surrounding amyloid beta-containing senile plaques synthesize interleukin-1, an inflammatory cytokine that has been postulated to contribute to Alzheimer's disease pathology. Studies have demonstrated that amyloid beta treatment causes increased cytokine release in microglia and related cell cultures. The present work evaluates the specificity of this cellular response by comparing the effects of amyloid beta to that of amylin, another amyloidotic peptide. Both lipopolysaccharide-treated THP-1 monocytes and mouse microglia showed significant increases in mature interleukin-1beta release 48 h following amyloid beta or human amylin treatment, whereas nonfibrillar rat amylin had no effect on interleukin-1beta production by THP-1 cells. Lipopolysaccharide-stimulated THP-1 cells treated with amyloid beta or amylin also showed increased release of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6, as well as the chemokines interleukin-8 and macrophage inflammatory protein-1alpha and -1beta. THP-1 cells incubated with fibrillar amyloid beta or amylin in the absence of lipopolysaccharide also showed significant increases of both interleukin-1beta and tumor necrosis factor-alpha mRNA. Furthermore, treatment of THP-1 cells with amyloid fibrils resulted in an elevated expression of the immediate-early genes c-fos and junB. These studies provide further evidence that fibrillar amyloid peptides can induce signal transduction pathways that initiate an inflammatory response that is likely to contribute to Alzheimer's disease pathology.  相似文献   

13.
Melatonin receptors belong to the superfamily of G protein-coupled receptors. Cloning of Mel1c receptors expressed in Xenopus skin revealed the existence of a polymorphism for these receptors. Heterologous expression of the two allelic isoforms, called Mel1c(alpha) and Mel1c(beta), indicated functional differences in their signalling properties. Both isoforms are coupled to the cAMP and cGMP pathways. However, the alpha isoform is preferentially coupled to the cAMP pathway, whereas the beta isoform couples preferentially to the cGMP pathway. Coupling differences may be explained by the fact that five of the six amino acid substitutions between the two isoforms are localized within intracellular receptor regions potentially involved in G protein coupling. Allelic isoforms were also observed for Mel1a receptors expressed in ovine pars tuberalis, suggesting that polymorphism is a general feature of the melatonin receptor family. We also evaluated the potential of the two human melatonin receptor subtypes, Mel1a and Mel1b, to modulate the cGMP pathway. Melatonin inhibited intracellular cGMP levels in a dose-dependent manner in HEK293 cells transfected with the human Mel1b receptor. This was not the case for HEK293 cells transfected with the human Mel1a receptor. In conclusion, our results indicate that the expression of receptor subtypes and isoforms may permit differential signalling between melatonin receptors.  相似文献   

14.
Interleukin-1 beta induces gene expression and secretion of group-II phospholipase A2 and release of prostaglandin E2 from rat mesangial cells. The interleukin-1 beta-induced synthesis of group-II phospholipase A2 is prevented by transforming growth factor-beta 2, whereas transforming growth factor-beta 2 potentiated the interleukin-1 beta-evoked prostaglandin E2 production. Transforming growth factor-beta 2 itself did not induce synthesis of group-II phospholipase A2, although it stimulated prostaglandin E2 formation. Here we describe the effect of interleukin-1 beta and transforming growth factor-beta 2 on a cytosolic phospholipase A2 activity and prostaglandin E2 formation in rat mesangial cells. Based on the resistance to dithiothreitol and migration profiles on a Mono-Q anion-exchange column and a Superose 12 gel-filtration column, the cytosolic phospholipase A2 activity was assigned to a high-molecular-mass phospholipase A2. Measured with 1-stearoyl-2-[1-14C]arachidonoylglycero-phosphocholine as substrate, both interleukin-1 beta and transforming growth factor-beta 2 enhanced the high-molecular-mass phospholipase A2 activity. The stimulation of rat mesangial cells with interleukin-1 beta and transforming growth factor-beta 2 was time- and dose-dependent with maximal cytosolic phospholipase A2 activities at 10 nM and at 10 ng/ml respectively, after 24 h of stimulation. Under these conditions, interleukin-1 beta and transforming growth factor-beta 2 enhanced the cytosolic phospholipase A2 activity 2.2 +/- 0.6-fold and 2.5 +/- 0.6-fold, respectively. These results strongly suggest that an enhanced cytosolic high-molecular-mass phospholipase A2 activity is involved in the formation of prostaglandin E2 mediated by transforming growth factor-beta 2. Whether interleukin-1 beta induced group-II phospholipase A2 and/or interleukin-1 beta-enhanced cytosolic phospholipase A2 activity is involved in prostaglandin E2 formation in rat mesangial cells is discussed.  相似文献   

15.
Photoexcitation of retinal rod photoreceptor cells involves the activation of cGMP enzyme cascade in which sequential activation of rhodopsin, transducin, and the cGMP phosphodiesterase in the rod outer segment constitutes the signal amplification mechanism. Phosducin, a 33-kDa phosphoprotein, has been shown to form a tight complex with the T beta gamma subunit of transducin. In this study, we examined the interaction of phosducin-T beta gamma and the possible regulatory role of phosducin on the cGMP cascade. Addition of phosducin to photolyzed rod outer segment (ROS) membrane reduced the GTP hydrolysis activity of transducin as well as the subsequent activation of the cGMP phosphodiesterase. Phosducin also inhibited the pertussis toxin-catalyzed ADP-ribosylation of transducin, indicating that the interaction between the T alpha and T beta gamma subunits of transducin was interrupted upon binding of phosducin. The inhibitory effects of phosducin were reversed by the addition of exogenous T beta gamma. These results suggest that phosducin is capable of regulating the amount of T beta gamma available to interact with T alpha to form the active transducin complex and thereby functions as a negative regulator of the cGMP cascade. The phosducin-induced alteration of the subunit organization of transducin was examined by chemical cross-linking method using para-phenyl dimaleimide as cross-linker. It was found that the cross-linking among T alpha and T beta gamma was blocked in the presence of phosducin. This result implies that T beta gamma may undergo a conformational change upon phosducin binding which leads to the release of T alpha. Since phosducin is a soluble protein, the interaction with transducin only occurs when transducin is dissociated from ROS disc membrane. Indeed, phosducin failed to dissociate membrane-bound transducin and did not inhibit the initial cycle of transducin activation as measured by the presteady state GTP hydrolysis. However, phosducin interacts effectively with transducin released into solution after the initial activation and blocks the re-binding of T alpha. T beta gamma to ROS membrane by forming a tight complex with T beta gamma. This interaction may play an important role in regulating the turnover of the cGMP cascade in photoreceptor cells.  相似文献   

16.
PYPAF3 is a member of the PYRIN-containing apoptotic protease-activating factor-1-like proteins (PYPAFs, also called NALPs). Among the members of this family, PYPAF1, PYPAF5, PYPAF7, and NALP1 have been shown to induce caspase-1-dependent interleukin-1beta secretion and NF-kappaB activation in the presence of the adaptor molecule ASC. On the other hand, we recently discovered that PYNOD, another member of this family, is a suppressor of these responses. Here, we show that PYPAF3 is the second member that inhibits caspase-1-dependent interleukin-1beta secretion. In contrast, PYPAF2/NALP2 does not inhibit this response but rather inhibits the NF-kappaB activation that is induced by the combined expression of PYPAF1 and ASC. Both PYPAF2 and PYPAF3 mRNAs are broadly expressed in a variety of tissues; however, neither is expressed in skeletal muscle, and only PYPAF2 mRNA is expressed in heart and brain. They are also expressed in many cell lines of both hematopoietic and non-hematopoietic lineages. Stimulation of monocytic THP-1 cells with lipopolysaccharide or interleukin-1beta induced PYPAF3 mRNA expression. Furthermore, the stable expression of PYPAF3 in THP-1 cells abrogated the ability of the cells to produce interleukin-1beta in response to lipopolysaccharide. These results suggest that PYPAF3 is a feedback regulator of interleukin-1beta secretion. Thus, PYPAF2 and PYPAF3, together with PYNOD, constitute an anti-inflammatory subgroup of PYPAFs.  相似文献   

17.
Here we tested the effect of interleukin-1beta, a pro-inflammatory cytokine, on cAMP accumulation and chloride efflux in Calu-3 airway epithelial cells in response to ligands binding to adenylyl cyclase-coupled receptors such as the beta2 adrenoreceptor and EP prostanoid receptors. Interleukin-1beta significantly increased isoprenaline-induced cAMP accumulation by increasing beta2 adrenoreceptor numbers via a protein kinase A-dependent mechanism. In contrast, interleukin-1beta significantly impaired prostaglandin E2-induced cAMP accumulation by induction of cyclo-oxygenase-2, prostaglandin E2 production, and a resulting down-regulation of adenylyl cyclase. The cAMP changes were all mirrored by alterations in chloride efflux assessed using the fluorescent chloride probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide with interleukin-1beta increasing chloride efflux in response to isoprenaline and reducing the response to prostaglandin E2. Studies with glibenclamide confirmed that chloride efflux was via the cystic fibrosis transmembrane conductance regulator. Calu-3 expresses EP4 receptors, but not EP2, and receptor expression is reduced by interleukin-1beta. Collectively, these results provide mechanistic insight into how interleukin-1beta can differentially regulate cAMP generation and chloride efflux in response to different adenylyl cyclase-coupled ligands in the same cell. These findings have important implications for diseases involving inflammation and abnormal ion flux such as cystic fibrosis.  相似文献   

18.
It is generally accepted that G protein-coupled receptors stimulate soluble guanylyl cyclase (sGC)-mediated cGMP production indirectly, by increasing nitric oxide (NO) synthase activity in a calcium- and kinase-dependent manner. Here we show that normal and GH(3) immortalized pituitary cells expressed alpha(1)beta(1)-sGC heterodimer. Activation of adenylyl cyclase by GHRH, pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and forskolin increased NO and cGMP levels, and basal and stimulated cGMP production was abolished by inhibition of NO synthase activity. However, activators of adenylyl cyclase were found to enhance this NO-dependent cGMP production even when NO was held constant at basal levels. Receptor-activated cGMP production was mimicked by expression of a constitutive active protein kinase A and was accompanied with phosphorylation of native and recombinant alpha(1)-sGC subunit. Addition of a protein kinase A inhibitor, overexpression of a dominant negative mutant of regulatory protein kinase A subunit, and substitution of Ser(107)-Ser(108) N-terminal residues of alpha(1)-subunit with alanine abolished adenylyl cyclase-dependent cGMP production without affecting basal and NO donor-stimulated cGMP production. These results indicate that phosphorylation of alpha(1)-subunit by protein kinase A enlarges the NO-dependent sGC activity, most likely by stabilizing the NO/alpha(1)beta(1) complex. This is the major pathway by which adenylyl cyclase-coupled receptors stimulate cGMP production.  相似文献   

19.
The effect of interleukin-1 beta on the production of non-prostanoid vasoactive factors by cultured rat aortic smooth muscle cells was investigated. Under bioassay conditions, the perfusate from a column of confluent cells grown on beads and treated with interleukin-1 beta (1 ng/ml for 18 to 24 hr) abolished the contraction of a canine coronary ring without endothelium contracted by phenylephrine (1 microM), while the perfusate from control cells had no effect. The relaxing activity of the perfusate was observed when transit times were increased from 1 sec to 5 min. Nitro L-arginine (100 microM) reversed the relaxations and L-arginine stereoselectively restored the relaxations. Interleukin-1 beta (1 ng/ml) evoked a time-dependent accumulation of cyclic GMP but not cyclic AMP in cultured smooth muscle cells. The transfer of fresh or stored (-70 degrees C) conditioned culture medium from interleukin-1 beta-treated cells but not from control cells, to cultured smooth muscle cells stimulated the production of cyclic GMP. These observations demonstrate that interleukin-1 beta induces the production of transferable factor which relaxes vascular smooth muscle and stimulates the production of cyclic GMP.  相似文献   

20.
Increased concentrations of interleukin-6 (IL-6) have been found in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and crystal-related joint diseases. It is therefore of great interest to identify the cells responsible for the production of IL-6, and to investigate whether IL-6 plays a role in the pathogenesis of degenerative or inflammatory joint diseases. Here we show that human interleukin-1 beta (IL-1 beta) induces IL-6 synthesis and secretion in differentiated human chondrocytes. In organ cultures resembling closely the in vivo system 10(6) chondrocytes incubated with 100 units of interleukin-1 beta per ml of medium led to the release of 6 X 10(3) units of IL-6 within 24 h. Chondrocytes cultured in agarose or as monolayers similarly incubated with IL-1 beta produced even higher amounts of IL-6: 70 X 10(3) units per 10(6) cells within 24 h. The induction of IL-6 synthesis by IL-1 beta was also shown at the mRNA level. IL-6 secreted by stimulated chondrocytes showed heterogeneity upon Western blot analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号