共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor. 总被引:2,自引:0,他引:2 下载免费PDF全文
The nicotinic acetylcholine receptor (AChR) is a pentameric transmembrane protein (alpha 2 beta gamma delta) that binds the neurotransmitter acetylcholine (ACh) and transduces this binding into the opening of a cation selective channel. The agonist, competitive antagonist, and snake toxin binding functions of the AChR are associated with the alpha subunit (Kao et al., 1984; Tzartos and Changeux, 1984; Wilson et al., 1985; Kao and Karlin, 1986; Pederson et al., 1986). We used site-directed mutagenesis and expression of AChR in Xenopus oocytes to identify amino acid residues critical for ligand binding and channel activation. Several mutations in the alpha subunit sequence were constructed based on information from sequence homology and from previous biochemical (Barkas et al., 1987; Dennis et al., 1988; Middleton and Cohen, 1990) and spectroscopic (Pearce and Hawrot, 1990; Pearce et al., 1990) studies. We have identified one mutation, Tyr190 to Phe (Y190F), that had a dramatic effect on ligand binding and channel activation. These mutant channels required more than 50-fold higher concentrations of ACh for channel activation than did wild type channels. This functional change is largely accounted for by a comparable shift in the agonist binding affinity, as assessed by the ability of ACh to compete with alpha-bungarotoxin binding. Other mutations at nearby conserved positions of the alpha subunit (H186F, P194S, Y198F) produce less dramatic changes in channel properties. Our results demonstrate that ligand binding and channel gating are separable properties of the receptor protein, and that Tyr190 appears to play a specific role in the receptor site for acetylcholine. 相似文献
2.
L D Chabala 《The Journal of general physiology》1992,100(4):729-748
Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and -100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential. 相似文献
3.
J Castresana G Fernandez-Ballester A M Fernandez J L Laynez J L Arrondo J A Ferragut J M Gonzalez-Ros 《FEBS letters》1992,314(2):171-175
The effects on the protein structure produced by binding of cholinergic agonists to purified acetylcholine receptor (AcChR) reconstituted into lipid vesicles, has been studied by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Spectral changes in the conformationally sensitive amide I infrared band indicates that the exposure of the AcChR to the agonist carbamylcholine, under conditions which drive the AcChR into the desensitized state, produces alterations in the protein secondary structure. Quantitative estimation of these agonist-induced alterations by band-fitting analysis of the amide I spectral band reveals no appreciable changes in the percent of alpha-helix, but a decrease in beta-sheet structure, concomitant with an increase in less ordered structures. Additionally, agonist binding results in a concentration-dependent increase in the protein thermal stability, as indicated by the temperature dependence of the protein infrared spectrum and by calorimetric analysis, which further suggest that AcChR desensitization induced by the cholinergic agonist implies significant rearrangements in the protein structure. 相似文献
4.
The nicotinic acetylcholine receptor (AChR) from the electric organ of T. californica is highly phosphorylated on tyrosine residues in vivo. In contrast, tyrosine phosphorylation of the AChR in rat myotube cultures is barely detectable. To determine whether this low level of tyrosine phosphorylation of the AChR in muscle cell cultures is due to a lack of neuronal innervation, we examined tyrosine phosphorylation of the AChR in rat diaphragm in vivo. Immunofluorescent double labeling of cryostat sections of rat diaphragm using antibodies specific for phosphotyrosine or the AChR showed a direct colocalization of phosphotyrosine with the AChR at the neuromuscular junction. Using anti-phosphotyrosine antibodies, immunoblots of AChR partially purified from rat diaphragm demonstrated that the rat AChR contains high levels of phosphotyrosine. Denervation of rat diaphragm induced a time-dependent decrease in tyrosine phosphorylation of the AChR, as measured by immunocytochemical and immunoblot techniques. Tyrosine phosphorylation of the AChR occurred late in the development of the neuromuscular junction, between postnatal days 7 and 14. These studies suggest that muscle innervation regulates tyrosine phosphorylation of the AChR and that tyrosine phosphorylation may play an important role in the developmental regulation of the AChR. 相似文献
5.
Fluorescent energy transfer measurements of dansyl-C6-choline binding to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were used to determine binding characteristics of the alpha gamma and alpha delta binding sites. Equilibrium binding measurements show that the alpha gamma site has a lower fluorescence than the alpha delta site; the emission difference is due to differences in the intrinsic fluorescence of the bound fluorophores rather than differences in energy transfer at the two sites. Stopped-flow fluorescence kinetics showed that dissociation of dansyl-C6-choline from the AChR in the desensitized conformation occurs 5-10-fold faster from the alpha gamma site than from the alpha delta site. The dissociation rates are robust for distinct protein preparations, in the presence of noncompetitive antagonists, and over a broad range of ionic strengths. Equilibrium fluorescent binding measurements show that dansyl-C6-choline binds with higher affinity to the alpha delta site (K = 3 nM) than to the alpha gamma site (K = 9 nM) when the AChR is desensitized. Similar affinity differences were observed for acetylcholine itself. The distinct dissociation rates permit the extent of desensitization to be measured at each site during the time course of binding. This sequential mixing method of measuring the desensitized state population at each agonist site can be applied to study the mechanism of AChR activation and subsequent desensitization in detail. 相似文献
6.
To characterize the structural requirements for ligand orientation compatible with activation of the Torpedo nicotinic acetylcholine receptor (nAChR), we used Cys mutagenesis in conjunction with sulfhydryl-reactive reagents to tether primary or quaternary amines at defined positions within the agonist binding site of nAChRs containing mutant alpha- or gamma-subunits expressed in Xenopus oocytes. 4-(N-Maleimido)benzyltrimethylammonium and 2-aminoethylmethanethiosulfonate acted as irreversible antagonists when tethered at alphaY93C, alphaY198C, or gammaE57C, as well as at alphaN94C (2-aminoethylmethanethiosulfonate only). [2-(Trimethylammonium)-ethyl]-methanethiosulfonate (MTSET), which attaches thiocholine to binding site Cys, also acted as an irreversible antagonist when tethered at alphaY93C, alphaN94C, or gammaE57C. However, MTSET modification of alphaY198C resulted in prolonged activation of the nAChR not reversible by washing but inhibitable by subsequent exposure to non-competitive antagonists. Modification of alphaY198C (or any of the other positions tested) by [(trimethylammonium)methyl]methanethiosulfonate resulted only in irreversible inhibition, while modification of alphaY198C by [3-(trimethylammonium)propyl]methanethiosulfonate resulted in irreversible activation of nAChR, but at lower efficacy than by MTSET. Thus changing the length of the tethering arm by less than 1 A in either direction markedly effects the ability of the covalent trimethylammonium to activate the nAChR, and agonist activation depends on a very selective orientation of the quaternary ammonium within the agonist binding site. 相似文献
7.
Distance between the agonist and noncompetitive inhibitor sites on the nicotinic acetylcholine receptor 总被引:5,自引:0,他引:5
The nicotinic acetylcholine receptor possesses an agonist binding site on each of the two alpha-subunits and an allosterically coupled noncompetitive inhibitor (NCI) site. The spatial relationships between these sites have been determined by fluorescence energy transfer employing lifetime and steady-state techniques with two donor-acceptor pairs. 6-(5-Dimethylaminonaphthalene-1-sulfonamido)hexanoic acid-beta-(N-trimethylammonium)ethyl ester (dansyl-C6-choline, an agonist) and bis(choline)-N-(4-nitrobenzo-2-oxa-1,3-diazol-7-yl)-iminodiprop rionate (BCNI, a competitive antagonist) were employed as energy donors bound to the agonist sites. Ethidium was employed as a specific probe of the NCI site and served as the energy acceptor for both donors. Under steady-state conditions, energy transfer was measured by monitoring BCNI fluorescence as a function of occupancy of ethidium. Changes in acceptor occupancy were achieved by titrating acetylcholine receptor-donor-acceptor complexes with phencyclidine, a nonfluorescent NCI ligand. Extrapolation of the data to 100% acceptor occupancy yielded a transfer efficiency of 38% for the BCNI-ethidium pair. In the second method, the transfer efficiency of the dansyl-C6-choline-ethidium pair was determined by analysis of the reduction of the donor-excited state fluorescence lifetime. The nanosecond decay rates for dansyl-C6-choline measured in the presence of phencyclidine are characterized by two lifetimes (tau 1 = 6.7; tau 2 = 17.1 ns) with an amplitude ratio, alpha 1/alpha 2 = 2.3. In the presence of ethidium, the two lifetimes were proportionally diminished while retaining a comparable ratio of amplitudes. Displacement of ethidium from the NCI site by phencyclidine restored the two lifetimes to their original values. These data indicate that the donors bound to the two agonist sites transferred energy with similar efficiencies to the acceptor. Thus, the lifetime data suggest that the NCI site is approximately equidistant from each of the agonist sites. The corrected efficiency of donor quenching by this method was 34%, a value in close accord with the steady-state measurements. The distance between the agonist sites and the NCI site was calculated to be between 21-35 A for the BCNI/ethidium pair and 22-40 A for the dansyl-C6-choline/ethidium pair. Consideration of these distances with respect to the molecular dimensions of the receptor and location of the agonist sites suggests a location for the NCI site near the ion channel at the extracellular surface of the membrane bilayer. 相似文献
8.
Liu S Babcock MS Bode J Chang JS Fischer HD Garlick RL Gill GS Lund ET Margolis BJ Mathews WR Rogers BN Wolfe M Groppi V Baldwin ET 《Protein expression and purification》2011,79(1):102-110
Nicotinic acetylcholine receptors (nAChRs) form ligand-gated ion channels that mediate fast signal transmission at synapses. These receptors are members of a large family of pentameric ion channels that are of active medical interest. An expression system utilizing a chimerical construct of the N-terminal extracellular ligand binding domain of alpha7 type nAChR and the C-terminal transmembrane portion of 5HT3 type receptor resulted high level of expressions. Two ligand affinity chromatography purification methods for this receptor have been developed. One method relies on the covalent immobilization of a high affinity small molecule alpha7 nAChR agonist, (R)-5-(4-aminophenyl)-N-(quinuclidin-3-yl) furan-2-carboxamide, and the other uses mono biotinylated alpha-bungarotoxin, an antagonist, that forms a quasi-irreversible complex with alpha7 nAChR. Detergent solubilized alpha7/5HT(3) chimeric receptors were selectively retained on the affinity resins and could be eluted with free ligand or biotin. The proteins purified by both methods were characterized by gel electrophoresis, mass spectra, amino acid composition analysis, and N-terminal sequence determination. These analyses confirmed the isolation of a mature alpha7/5HT(3) receptor with the signal peptide removed. These results suggest a scalable path forward to generate multi-milligram amounts of purified complexes for additional studies including protein crystallization. 相似文献
9.
10.
We studied activation of the nicotinic acetylcholine (ACh) receptor on cells of a mouse clonal muscle cell line (BC3H1). We analyzed single-channel currents through outside-out patches elicited with various concentrations of acetylcholine (ACh), carbamylcholine (Carb) and suberyldicholine (Sub). Our goal is to determine a likely reaction scheme for receptor activation by agonist and to determine values of rate constants for transitions in that scheme. Over a wide range of agonist concentrations the open-time duration histograms are not described by single exponential functions, but are well-described by the sum of two exponentials, a brief-duration and a long-duration component. At high concentration, channel openings occur in groups and these groups contain an excess number of brief openings. We conclude that there are two open states of the ACh receptor with different mean open times and that a single receptor may open to either open state. The concentration dependence of the numbers of brief and long openings indicates that brief openings do not result from the opening of channels of receptors which have only one agonist molecule bound to them. Closed-time duration histograms exhibit a major brief component at low concentrations. We have used the method proposed by Colquhoun and Sakmann (1981) to analyze these brief closings and to extract estimates for the rates of channel opening (beta) and agonist dissociation (k-2). We find that this estimate of beta does not predict our closed-time histograms at high agonist concentration (ACh: 30-300 microM; Carb: 300-1,000 microM). We conclude that brief closings at low agonist concentrations do not result solely from transitions between the doubly-liganded open and the doubly-liganded closed states. Instead, we postulate the existence of a second closed-channel state coupled to the open state. 相似文献
11.
William McChesney Moore Robert N. Brady 《Biochimica et Biophysica Acta (BBA)/General Subjects》1976,444(1):252-260
Specific binding of 125I-labeled α-bungarotoxin to a 34 800 × g pellet of a whole rat brain homogenate has been obtained at levels 2 pmol toxin per g of whole brain with a Kd of 8·10?9 M. Binding is reduced 90% by 10?5 M (+)- tubocurarine chloride and 10?4 M nicotine, whereas concentrations of 10?4 M choline chloride, atropine sulfate and eserine sulfate have essentially no effect on toxin binding. These results compare closely with those obtained from binding studies with 125I-labeled α-bungarotoxin and soluble acetylcholine receptor protein preparations form Torpedo nobiliana; suggesting that this mammalian receptor protein is nicotinic in character.Extraction of the 34 800 × g pellet with 1% Emulphogene yields a soluble fraction with specifically binds 125I-labeled α-bungarotoxin with a Kd of 5·10?9 M. Nicotine and α-bungarotoxin at concentrations of 10?5 M abolish toxin- receptor complex formation and carbachol and (+)-tubocurarine chloride reduce complex formation 35–40% at similar concentrations. Eserine sulfate, atropine sulfate, decamethonium, and pilocarpine had no effect on complex formation at concentrations of 10?5 M. 相似文献
12.
Agrin causes acetylcholine receptors (AChRs) on chick myotubes in culture to aggregate, forming specializations that resemble the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction. Here we report that treating chick myotubes with agrin caused an increase in phosphorylation of the AChR beta, gamma, and delta subunits. H-7, a potent inhibitor of several protein serine kinases, blocked agrin-induced phosphorylation of the gamma and delta subunits, but did not prevent either agrin-induced AChR aggregation or phosphorylation of the beta subunit. Experiments with anti-phosphotyrosine antibodies demonstrated that agrin caused an increase in tyrosine phosphorylation of the beta subunit that began within 30 min of adding agrin to the myotube cultures, reached a plateau by 3 hr, and was blocked by treatments known to block agrin-induced AChR aggregation. Anti-phosphotyrosine antibodies labeled agrin-induced specializations as they do the postsynaptic apparatus. These results suggest that agrin-induced tyrosine phosphorylation of the beta subunit may play a role in regulating AChR distribution. 相似文献
13.
Unwin N 《Journal of molecular biology》2005,346(4):967-989
14.
Ana Sofía Vallés 《生物化学与生物物理学报:生物膜》2008,1778(10):2395-2404
The anticonvulsive drug Lamotrigine (LTG) is found to activate adult muscle nicotinic acetylcholine receptors (AChR). Single-channel patch-clamp recordings showed that LTG (0.05-400 μM) applied alone is able to open AChR channels. [125I]α-bungarotoxin-binding studies further indicate that LTG does not bind to the canonical ACh-binding sites. Fluorescence experiments using the probe crystal violet demonstrate that LTG induces the transition from the resting state to the desensitized state of the AChR in the presence of excess α-bungarotoxin, that is, when the agonist site is blocked. Allosterically-potentiating ligands or the open-channel blocker QX-314 exhibited a behavior different from that of LTG. We conclude that LTG activates the AChR through a site that is different from those of full agonists/competitive antagonists and allosterically-potentiating ligands, respectively. 相似文献
15.
M G Bixel M Krauss Y Liu M L Bolognesi M Rosini I S Mellor P N Usherwood C Melchiorre K Nakanishi F Hucho 《European journal of biochemistry》2000,267(1):110-120
Several wasp venoms contain philanthotoxins (PhTXs), natural polyamine amides, which act as noncompetitive inhibitors (NCIs) on the nicotinic acetylcholine receptor (nAChR). Effects of varying the structure of PhTXs and poly(methylene tetramine)s on the binding affinity have been investigated. Using the fluorescent NCI ethidium in a displacement assay Kapp values of these compounds have been determined. We found that an increase in size of the PhTX's hydrophobic head group significantly increased the binding affinity, while inserting positive charge almost completely destroyed it. Elongating the PhTX polyamine chain by introducing an additional aminomethylene group decreased the binding affinity, whereas a terminal lysine improved it. In general, poly(methylene tetramine)s showed higher binding affinities than PhTX analogues. The stoichiometry of PhTX binding was determined to be two PhTX molecules per receptor monomer. PhTXs appeared to bind to a single class of nonallosterically interacting binding sites and bound PhTX was found to be completely displaced by well-characterized luminal NCIs. To elucidate the site of PhTX binding, a photolabile, radioactive PhTX derivative was photocross-linked to the nAChR in its closed channel conformation resulting in labeling yields for the two alpha and the beta, gamma and delta subunits of 10.4, 11.1, 4.0 and 7.4%, respectively. Based on these findings we suggest that PhTXs and poly(methylene tetramine)s enter the receptor's ionic channel from the extracellular side. The hydrophobic head groups most likely bind to the high-affinity NCI site, while the positively charged polyamine chains presumably interact with the negatively charged selectivity filter located deep in the channel lumen. 相似文献
16.
Corrie J B daCosta Andrei A Ogrel Elizabeth A McCardy Michael P Blanton John E Baenziger 《The Journal of biological chemistry》2002,277(1):201-208
The structural and functional properties of reconstituted nicotinic acetylcholine receptor membranes composed of phosphatidyl choline either with or without cholesterol and/or phosphatidic acid have been examined to test the hypothesis that receptor conformational equilibria are modulated by the physical properties of the surrounding lipid environment. Spectroscopic and chemical labeling data indicate that the receptor in phosphatidylcholine alone is stabilized in a desensitized-like state, whereas the presence of either cholesterol or phosphatidic acid favors a resting-like conformation. Membranes that effectively stabilize a resting-like state exhibit a relatively large proportion of non-hydrogen-bonded lipid ester carbonyls, suggesting a relatively tight packing of the lipid head groups and thus a well ordered membrane. Functional reconstituted membranes also exhibit gel-to-liquid crystal phase transition temperatures that are higher than those of nonfunctional reconstituted membranes composed of phosphatidylcholine alone. Significantly, incorporation of the receptor into phosphatidic acid-containing membranes leads to a dramatic increase in both the lateral packing densities and the gel-to-liquid crystal phase transition temperatures of the reconstituted lipid bilayers. These results suggest a functional link between the nicotinic acetylcholine receptor and the physical properties of phosphatidic acid-containing membranes that could underlie the mechanism by which this lipid preferentially enhances receptor function. 相似文献
17.
18.
19.
The alpha-neurotoxins are three-fingered peptide toxins that bind selectively at interfaces formed by the alpha subunit and its associating subunit partner, gamma, delta, or epsilon of the nicotinic acetylcholine receptor. Because the alpha-neurotoxin from Naja mossambica mossambica I shows an unusual selectivity for the alpha gamma and alpha delta over the alpha epsilon subunit interface, residue replacement and mutant cycle analysis of paired residues enabled us to identify the determinants in the gamma and delta sequences governing alpha-toxin recognition. To complement this approach, we have similarly analyzed residues on the alpha subunit face of the binding site dictating specificity for alpha-toxin. Analysis of the alpha gamma interface shows unique pairwise interactions between the charged residues on the alpha-toxin and three regions on the alpha subunit located around residue Asp(99), between residues Trp(149) and Val(153), and between residues Trp(187) and Asp(200). Substitutions of cationic residues at positions between Trp(149) and Val(153) markedly reduce the rate of alpha-toxin binding, and these cationic residues appear to be determinants in preventing alpha-toxin binding to alpha 2, alpha 3, and alpha 4 subunit containing receptors. Replacement of selected residues in the alpha-toxin shows that Ser(8) on loop I and Arg(33) and Arg(36) on the face of loop II, in apposition to loop I, are critical to the alpha-toxin for association with the alpha subunit. Pairwise mutant cycle analysis has enabled us to position residues on the concave face of the three alpha-toxin loops with respect to alpha and gamma subunit residues in the alpha-toxin binding site. Binding of NmmI alpha-toxin to the alpha gamma interface appears to have dominant electrostatic interactions not seen at the alpha delta interface. 相似文献