首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The ecology of Australia's most extensive canopy‐forming alga, Ecklonia radiata, is often studied with little regard as to whether it occurs in monospecific stands or as part of a mixed assemblage of canopy‐forming algae. We tested the hypothesis that E. radiata does not primarily occur as monospecific stands, rather it occurs more often in stands of mixed algae. At a 1‐m2 scale we recognized three main configurations within forests of algae (hereafter called stands): E. radiata that occurs as (i) monospecific stands; (ii) clumps (four or more individuals together) surrounded by species of Fucales; or (iii) individual plants (or clusters of fewer than three plants) interspersed among species of Fucales. All three types of stand occurred in similar proportions (percentage cover) across two regions of Australia's southern coastline (Western and South Australia). We also tested the hypothesis that these three types of stands (identified at 1 m2) contain different assemblages of invertebrates associated with the holdfast of E. radiata. Assemblages of invertebrates varied between monospecific and interspersed stands, but not between monospecific and clumped stands. These results suggest that variation in the configuration of subtidal algae (stands measured at a 1‐m2 scale) has the potential to influence the composition and abundance of associated biota. We suggest that although studies in stands of monospecific E. radiata may provide useful information for the majority of forests containing E. radiata (monospecific and clumped stands made up 65% of forests sampled), caution must be used when extrapolating to stands of mixed, interspersed algae (>31% of forests sampled).  相似文献   

2.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

3.
Abstract.
  • 1 The plant-to-plant movement of the corn leafhopper, Dalbulus maidis Delong & Wolcott, and the spread of the leafhopper-borne maize rayado fino virus were investigated in four patterns of maize (Zea mays) dispersion.
  • 2 D. maidis was less abundant and the spread of the virus was slower in dense stands of maize than in sparse stands.
  • 3 When plant density was held constant, leafhoppers were more abundant in maize stands with relatively equidistant plant spacing (uniform dispersion) than in stands with densely-sown rows (linear dispersion) or double-sown hills (clumped dispersion), but there was no difference in virus incidence among these plant dispersion patterns.
  • 4 Leafhoppers were less likely to move to adjacent plants in uniform plant dispersion patterns than in either linear or clumped dispersion patterns. This result may explain the lack of higher virus incidence in uniform stands, despite higher leafhopper abundance.
  • 5 Leafhopper movement was consistent with a simple rule: the shorter the distance to the next adjacent plant, the more likely a leafhopper is to move between plants.
  • 6 These results demonstrate that host plant dispersion can affect the abundance and behaviour of highly mobile herbivorous insects even when plant density is constant.
  相似文献   

4.
Bond-Lamberty B  Gower ST 《Oecologia》2007,151(4):584-592
Bryophytes dominate the carbon and nitrogen cycling of many poorly drained terrestrial ecosystems and are important in the vegetation-atmosphere exchange of carbon and water, yet few studies have estimated their leaf area at the stand scale. This study quantified the bryophyte-specific leaf area (SLA) and leaf area index (LAI) in a group of different-aged boreal forest stands in well and poorly drained soils. Species-specific SLA (for three feather mosses, four Sphagnum spp. and Aulacomnium palustre mixed with Tomentypnum nitens) was assessed by determining the projected area using a flatbed scanner and cross-sectional geometry using a dissecting microscope. The hemisurface leaf area was computed as the product of SLA and live biomass and was scaled by coverage data collected at all stands. Pleurozium schreberi dominated the spatial coverage, biomass and leaf area in the well-drained stands, particularly the oldest, while S. fuscum and A. palustre were important in the poorly drained stands. Live moss biomass ranged from 47 to 230 g m−2 in the well-drained stands dominated by feather mosses and from 102 to 228 g m−2 in the poorly drained stands. Bryophyte SLA varied between 135 and 473 cm2 g−1, for A. palustre and S. capillifolium, respectively. SLA was strongly and significantly affected by bryophyte species, but did not vary between stands; in general, there was no significant difference between the SLA of non-Sphagnum mosses. Bryophyte LAI increased with stand age, peaking at 3.1 and 3.7 in the well and poorly drained stands, respectively; this represented approximately 40% of the overstory LAI in the well-drained stands and 100–1,000% in the poorly drained stands, underscoring the important role bryophytes play in the water and carbon budgets of these boreal forests.  相似文献   

5.
Canopy transpiration in a chronosequence of Central Siberian pine forests   总被引:4,自引:0,他引:4  
Tree transpiration was measured in 28, 67, 204 and 383‐y‐old uniform stands and in a multicohort stand (140–430 y) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August 1995. In addition transpiration of three codominant trees was monitored for two years in a 130‐y‐old stand. All stands established after fire. Leaf area index (LAI) ranged between 0.6 (28‐y‐old stand) and 1.6 for stands older than 67‐y. Stand xylem area at 1.3 m height increased from 4 cm2 m?2 (28‐y) to 11.5 cm2 m?2 (67‐y) and decreased again to 7 cm2 m?2 in old stands. Above‐ground living biomass increased from 1.5 kg dry weight m?2 (28‐y) to 14 kg dry weight m?2 (383‐y). Day‐to‐day variation of tree transpiration in summer was dependent on net radiation, vapour pressure deficit, and soil water stress. Tree‐to‐tree variation of xylem flux was small and increased with heterogeneity in canopy structure. Maximum rates of xylem flux density followed the course of net radiation from mid April when a constant level of maximum rates was reached until mid September when low temperatures and light strongly reduced flux density. Maximum sap flux density (60 g m?2 s?1) and canopy transpiration (1.5 mm d?1) were reached in the 67‐y stand. Average canopy transpiration of all age classes was 0.72 ± 0.3 mm d?1. Canopy transpiration (E) was not correlated with LAI but related to stand sapwood area SA (E = ? 0.02 + 1.15SA R2) which was determined by stand density and tree sapwood area.  相似文献   

6.
Controlled experiments on post-emergence damping-off, using small populations of garden cress seedlings (Lepidium sativum) inoculated with Pythium irregulare, demonstrate that planting density of the host population plays an important role in determining the rate of multiplication and the rate of advance of the disease. At high seedling densities the disease is transmitted readily between host plants, but at lower densities the greater distance between adjacent plants reduces the probability of successful transmissions, and this is reflected in the parameters of multiplication and advance. A simple negative relationship was found between the mean distance separating adjacent plants and both rate of advance of disease front and rate of multiplication of disease in a randomly inoculated seedling stand.  相似文献   

7.
W. J. Lindberg 《Oecologia》1980,46(3):338-342
Summary Heads, i.e. colonies, of the bryozoan Schizoporella pungens are discrete resource units which protect the xanthid crab Pilumnus sayi from predation. The heads were spatially clumped, temporally stable, and differed both qualitatively and quantitatively. The number of adult P. sayi was equal to the number of heads with preferred characteristics, yet a relative shortage of this resource is suggested with concomitant intraspecific competition. Adult crabs occupied heads individually except for infrequent cases of double occupancy by a male and female. Further spatial pattern among crabs was consistent with a hypothesis that males defend clumps of heads occupied by females.  相似文献   

8.
We compared four types of 30‐year‐old forest stands growing on spoil of opencast oil shale mines in Estonia. The stand types were: (1) natural stands formed by spontaneous succession, and plantations of (2) Pinus sylvestris (Scots pine), (3) Betula pendula (silver birch), and (4) Alnus glutinosa (European black alder). In all stands we measured properties of the tree layer (species richness, stand density, and volume of growing stock), understory (density and species richness of shrubs and tree saplings), and ground vegetation (aboveground biomass, species richness, and species diversity). The tree layer was most diverse though sparse in the natural stands. Understory species richness per 100‐m2 plot was highest in the natural stand, but total stand richness was equal in the natural and alder stands, which were higher than the birch and pine stands. The understory sapling density was lower than 50 saplings/100 m2 in the plantations, while it varied between 50 and 180 saplings/100 m2 in the natural stands. Growing stock volume was the least in natural stands and greatest in birch stands. The aboveground biomass of ground vegetation was highest in alder stands and lowest in the pine stands. We can conclude that spontaneous succession promotes establishment of diverse vegetation. In plantations the establishment of diverse ground vegetation depends on planted tree species.  相似文献   

9.
This study examined the nitrogen (N) dynamics of a black spruce (Picea mariana (Mill.) BSP)-dominated chronosequence in Manitoba, Canada. The seven sites studied each contained separate well- and poorly drained stands, originated from stand-killing wildfires, and were between 3 and 151 years old. Our goals were to (i) measure total N concentration ([N]) of all biomass components and major soil horizons; (ii) compare N content and select vegetation N cycle processes among the stands; and (iii) examine relationships between ecosystem C and N cycling for these stands. Vegetation [N] varied significantly by tissue type, species, soil drainage, and stand age; woody debris [N] increased with decay state and decreased with debris size. Soil [N] declined with horizon depth but did not vary with stand age. Total (live + dead) biomass N content ranged from 18.4 to 99.7 g N m−2 in the well-drained stands and 37.8–154.6 g N m−2 in the poorly drained stands. Mean soil N content (380.6 g N m−2) was unaffected by stand age. Annual vegetation N requirement (5.9 and 8.4 g N m−2 yr−1 in the middle-aged well- and poorly drained stands, respectively) was dominated by trees and fine roots in the well-drained stands, and bryophytes in the poorly drained stands. Fraction N retranslocated was significantly higher in deciduous than evergreen tree species, and in older than younger stands. Nitrogen use efficiency (NUE) was significantly lower in bryophytes than in trees, and in deciduous than in evergreen trees. Tree NUE increased with stand age, but overall stand NUE was roughly constant (∼ ∼150 g g−1 N) across the entire chronosequence.  相似文献   

10.
Summary The relative allocation of biomass within monospecific stands of Acaena magellanica that vary in level of wind and water stress differ greatly. Populations in January 1983 varied in leaf biomass from 192 to 2373 g wet wt m-2 (1105 to 10023 kJ m-2) Inflorescences were not produced at either of these extremes of leaf biomass. In two populations with intermediate levels of leaf biomass (597 and 640 g wet wt m-2, 3185 and 2664 kJ m-2), inflorescent biomass was 104 and 273 g wet wt m-2 (385 and 1127 kJ m-2). The relative allocation to sexual reproduction is thus not constant in A. magellanica. The levels of energy in the leaves and inflorescences did not differ greatly despite differences in proximate composition.  相似文献   

11.
Algal nitrogen fixation in Californian streams: seasonal cycles   总被引:1,自引:0,他引:1  
Using the acetylene reduction technique, nitrogen fixation was measured in Rocky Creek, a small seasonally dry Californian stream. In the 3 years since 1970 nitrogen fixation varied seasonally and spatially, being highest in the early stages of colony growth in shallow, clear regions where there was little shade. The annual rate of N2-fixation was similar to that found recently for Arctic tundra, but was greater than rates for Antarctic rivulets and less than rates for temperate rocky shores. A hetero-cystous Nostoc appeared to be the sole organism responsible for this fixation. Nostoc occurred in variously sized gelatinous clumps on the stable boulders on which the co-dominant alga, Ulothrix zonata, also grew. Maximum nitrogenase activity yielded 70 nmoles C2H4 mg-1 drywt day-1 and 123 nmoles C2H4cm-2 day-1. Estimated annual amounts of nitrogen fixed in 1971 ranged from 42 in shade to 360 mg N fixed m-2y-1 in the most favourable areas. Nostoc biomass reached 33 g dry wt m-2 and peeled off each year in June-July. Because Nostoc was confined to stable rocks the biomass per unit area of the stream as a whole was much less, ranging from 0.054 to 1.26 g dry wt m-2 in the most favourable site. Nostoc was common throughout the length of Rocky Creek and also plentiful in eight out of ten adjacent streams but not in the main river (Eel River South Fork), probably due to high turbulence and turbidity. N2-fixation in these streams makes a significant, but probably small contribution to the nitrogen income of the nitrogen-deficient Eel River system. Nostoc colony establishment appears to be controlled by a combination of reduced turbulence and firmer attachment of the colonies to the substrate. Nostoc colony disappearance in June is probably due to nutrient depletion.  相似文献   

12.
In vitro growth and multiplication of shoots of a woody tree species Wrightia tomentosa in a controlled carbon dioxide environment was studied. The cultures were grown on BA supplemented MS medium with or without 3% sucrose. A range of CO2 concentrations (0.0, 0.6, 10.0 and 40.0 g m–3) was controlled in small chambers by using solutions of NaHCO3, Na2CO3, KHCO3 and K2CO3. To obtain a CO2-free environment, a saturated solution of KOH was kept in the chambers. It was concluded that the growing shoot cultures required either sucrose in the medium as a carbon source or an ambient CO2 environment. Complete absence of a carbon source caused severe browning of the shoots and death within 30 days. The cultures grew better with 10.0 g m–3 carbon dioxide in the environment than with 3.0% sucrose in the medium. With both CO2 and sucrose being available, the best response was obtained at 0.6 g m–3 CO2 in the chamber. At this concentration the rate of shoot multiplication was nearly double the standard rate obtained when exposed to the natural CO2 level and sucrose-supplemented medium. Total fresh and dry weight, leaf number and area per cluster also showed the best response under this condition.  相似文献   

13.
Abstract. For a 28-week period in late 1987 and early 1988, a study of seed-shedding by several heath species was carried out at the Muir of Dinnet in northeastern Scotland. The dominant species in the heath is Calluna vulgaris. Seed-shedding in Calluna began in early September 1987 and was completed in April 1988, with the period of maximum shedding falling between early November and late December 1987. The total numbers of seeds/m2 deposited in stands of Calluna in its four growth-phases were: pioneer, 18 910; building, 169010; mature, 198580; degenerate, 33900. Substantial loss of potential seeds results from the shedding of immature flowers. A control area close to, but outside the area of Calluna dominance had a deposition rate of 770 Calluna seeds/m2, indicating sufficient seed to colonise nearby available habitats. Seed rain was also recorded for several other heathland species: Erica cinerea, E. tetralix, Carex spp. and Betula pendula. Seeds of Erica cinerea were deposited in all the Calluna stands, 32670/m2 in the pioneer stand, 17600/m2 in building, 3720/m2 in mature, 210/m2 in degenerate (120/m2 in the control area). Numbers were greatest at the start of the sampling period, declining thereafter. This applied also to Betula seeds. Erica tetralix occurred in the degenerate Calluna stand and yielded 640 seeds/m2 (400/m2 in the control area). Seeds of Carex spp. were obtained in the control: 4110/m2. The method of sampling has a significant effect on the figures obtained. A method using tube collectors, emptied frequently, is recommended.  相似文献   

14.
Leaf area index (LAI, the one-sided foliage area per unit ground surface area) is a key determinant of plant productivity which has a large influence on water and energy exchange between vegetation and the atmosphere. The variation in forest LAI across landscapes and environmental gradients and its causes are not sufficiently understood. We measured the LAI of European beech (Fagus sylvatica) by litter trapping in 23 closed, mature stands across gradients of rainfall and soil acidity or fertility. With a mean LAI of 7.4 m2 m−2 (minimum: 5.6, maximum: 9.5 m2 m−2), beech stands maintained a comparably high leaf area index with relatively small variation along steep environmental gradients. Contrary to expectation, decreasing water availability (rainfall gradient from 1030 to 520 mm yr−1) or increasing soil acidity (pH 3–7) had no significant effect on LAI. Stand leaf mass (M l) increased slightly with soil fertility (C/N ratio, base saturation). We regressed parameters of site water availability (rainfall), soil fertility or acidity (pH, base saturation, C/N ratio, exchangeable Mg and Al content), and stand structure (stand age and stem density) against LAI and M l in order to detect environmental controls of stand leaf area. Stand age was the most influential factor for both LAI and M l (negative relationship). Stem density and the base saturation of the soil affected M l significantly, but had a weak influence on LAI. We conclude that the leaf area index of beech is mainly under control of age-related physiological factors, whereas the influence of soil chemistry and rainfall is comparably low.  相似文献   

15.
Abstract. 44 forest stands, including 42 stands with Pinus gerardiana Wall, ex Lamb dominant and two stands with broad-leaved trees, were sampled in the Suleiman Range in Balouchistan. Density oi Pinus gerardiana trees ranged from 24 to 930 trees / ha with a mean of 266 individuals / ha; the average basal area was 25.5 m2 ha-1. Adequate recruitment of Pinus seedlings was observed; higher seedling density is recorded from east-facing slopes, while tree density was higher on west-facing slopes. The average growth rate was estimated as 0.08 cm / yr radial growth. However, trees on high elevations and cooler slopes grow faster. Soil variables showed no correlation with density, basal area or importance values. It is suggested that the present degraded stage of the forests in the study area is of anthropogenic origin.  相似文献   

16.
1. Water velocity plays an important role in shaping plant community structure in flowing waters although few authors have yet attempted to explain the adaptation of plants to flow. 2. We aimed to test two hypotheses, that: (i) some emergent macrophytes reconfigure their shoot distribution in fast currents and form clumps, and (ii) the shape and morphology of such clumps minimises drag caused by the current. The study focuses on three emergent macrophytes that co‐occur along a gradient of water velocity. 3. The species showed a clear zonation in response to water depth and current velocity. Phragmites australis occupied shallower and more slowly flowing water than Typha angustifolia and Zizania latifolia, which had similar preferences. 4. Both T. angustifolia and Z. latifolia shoots were more clumped at high velocity, whereas they were more randomly distributed at low flow or in stagnant water. Because of the low shoot density, water flowed more easily through T. angustifolia clumps, whereas Z. latifolia clumps had a high shoot density and large amounts of trapped litter, causing stagnant water in the centre of the clump. The clumps of Z. latifolia with a high density of shoots were longer and narrower than T. angustifolia clumps. Phragmites australis was less tolerant of flow than the other two species and large amounts of litter trapped in the clumps impaired flow. 5. The shoot distribution of both T. angustifolia and Z. latifolia is reconfigured at high flow and this minimises drag on the clumps.  相似文献   

17.
Enzyme production with E. coli ATCC 11105, in a complex medium using phenylacetic acid as inducer is carried out in a stirred-tank reactor of 10 dm3 and an airlift tower-loop reactor of 60 dm3 with outer loop at a temperature of 27 °C. The optimum inducer concentration was 0.8 kg/m3, which was kept constant by fed-batch operation. The optimum of the relative dissolved O2-concentration with regard to saturation is below 10% in a stirred-tank reactor and at 35% in a tower-loop reactor. It was kept constant by parameter-adaptive control of the aeration rate. In a stirred-tank enzyme productivity is slightly higher than in a tower-loop reactor, and much higher than in a bubble column reactor.List of Symbols CPR kg/(m3 h) CO2-production rate - OTR kg/(m3 h) O2-transfer rate - OUR kg/(m3 h) O2-utilization rate - PAA phenylacetic acid (inducer) - RQ = CPR/OUR respiratory quotient - X kg/m3 cell mass concentration - m h–1 maximum specific growth rate  相似文献   

18.
Two axenic, in vitro liquid suspension cultures were established for Agardhiella subulata (C. Agardh) Kraft et Wynne, and their growth characteristics were compared. This study illustrated how reliable routes for the development of suspension cultures of macrophytic red algae of terete thallus morphology can be achieved for biotechnology applications. Undifferentiated filament clumps of 2–8 mm diameter were established by induction of callus-like tissue from thallus explants, and lightly branched microplantlets of 2–10 mm length were established by regeneration of filament clumps. The filament clumps were susceptible to regeneration. Adventitious shoot formation was reliably induced from 40% to 70% of the filament clumps by gentle mixing at 100 rev min?1 on an orbital shaker. The specific growth rate of the microplantlets was higher than the filament clumps in nonagitated well plate culture (4%–6% per day for microplantlets vs. 2%–3% per day for filament clumps) at 24° C and 8–36 μmol photons·m?2·s?1 irradiance (10:14 h LD cycle) when grown on ASP12 artificial seawater medium at pH 8.6–8.9 with 20%–25% per day medium replacement. Oxygen evolution rate vs. irradiance measurements showed that relative to the filament clumps, microplantlets had a higher maximum specific oxygen evolution rate (Po,max= 0.181 ± 0.035 vs. 0.130 ± 0.023 mmol O2·g?1 dry cell mass·h?1), but comparable respiration rate (Qo= 0.040 ± 0.013 vs. 0.033 ± 0.017 mmol O2·g?1 dry cell mass·h?1), compensation point (Ic= 3.8 ± 2.4 vs. 5.7 ± 1.2 μmol photons·m?2·s?1), and light intensity at 63.2% of saturation (Ik= 17.5 ± 3.9 vs. 14.9 ± 2.6 μmol photons·m?2·s?1). The microplantlet culture was more suitable for suspension culture development than the filament clump culture because it was morphologically stable and exhibited higher growth rates.  相似文献   

19.
The seasonal variation of phytoplankton photosynthesis was measured with 14C-method in a warmed ice-free pond in central Finland. Simultaneously with in situ measurements the photosynthesis was also measured in an incubator with different water temperatures and constant light (ca. 16 W m–2). The total annual photosynthesis was 57.2 C m–2 a–1. The portion of the winter and spring production of the annual photosynthesis was 18.4%, that of the autumn production ws 17.4%. Thus 64.3% of the total annual phytoplankton photosynthesis occurred in the three summer months. The range of the daily integrated photosynthesis per unit area was 1.9—563 mg C m–2d–1. The photosynthetic rate per unit chlorophyll a varied in situ from 0.94 to 33.1 mg C (mg chl. a)–1 d–1. The highest value was measured in the beginning of July and the lowest in mid-January. The photosynthetic rate increased in situ exponentially with increasing water temperature. In the incubator the highest photosynthetic rate values were also found in July and August (at+20 °C) when the phytoplankton population was increasing and the minimum values occurred after every diatom maximum both in spring and autumn. Light was a limiting factor for photosynthesis from September to Mid-January, low water temperature was a limiting factor from late January through May. The efficiency of the photosynthesis varied between 0.1 and 0.7% of P.A.R. According to the incubator experiments the Q10 values for the photosynthesis were 2.45 and 2.44 for the winter population between 1 and 10° C and for the summer population between 5 and 15° C, respectively, but the Q10 values decrease at the higher temperatures. The main effect of the warm effluents on the yearly photosynthesis was the increase of production in spring months due to the lack of ice cover. However, the increase of total annual phytoplankton photosynthesis was only ca. 10–15%, because the water temperature was during the spring months below 10° C.  相似文献   

20.
Summary The adsorption of Sulfolobus acidocaldarius on bituminous coal surfaces and the respiration rate during adsorption at 70° C were enhanced at pH 1.0–2.0, in comparison with those at pH 3.0–5.0. The maximum number of bacterial cells adsorbed per unit area of coal attained a maximum (1.4 × 1011 cells/m2) at pH 2.0. The rate of desulphurization at pH 2.2–2.5 was higher than at other pHs tested. Micrographs of S. acidocaldarius obtained by TEM and SEM indicated that the cells were adsorbed to the coal surfaces by extracellular slime. Specific inhibitors of membrane-bound ATPase (NaF, 20 mm) and respiration (NaN3, 1 mm; KCN, 1 mm) had pronounced effects on suppressing adsorption. The amount of S. acidocaldarius adsorbed decreased when the coal particles were leached in advance with 2.0 m HNO3. These facts lead to the conclusion that the adsorption of S. acidocaldarius on coal surfaces requires physiological activity relatd to respiration or energy conversion. Offprint requests to: V. B. Vitaya  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号