首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Anacardiaceae and Burseraceae are traditionally distinguished by the number of ovules (1 vs. 2) per locule and the direction of ovule curvature (syntropous vs. antitropous). Recent molecular phylogenetic studies have shown that these families are sister groups in Sapindales after having been separated in different orders for a long time. We present a comparative morphological study of the flower structure in both families. The major clades, usually supported in molecular phylogenetic analyses, are well supported by floral structure. In Anacardiaceae, there is a tendency to gynoecium reduction to a single fertile carpel (particularly in Anacardioideae). The single ovule has a long and unusually differentiated funicle, which connects with the stylar pollen tube transmitting tract in all representatives studied. In Anacardiaceae–Spondiadoideae, there is a tendency to form an extensive synascidiate zone, with a massive remnant of the floral apex in the centre; these features are also present in Beiselia (Burseraceae) and Kirkiaceae (sister to Anacardiaceae plus Burseraceae) and may represent a synapomorphy or apomorphic tendency for the three families. In core Burseraceae, gynoecium structure is much less diverse than in Anacardiaceae and has probably retained more plesiomorphies. Differences in proportions of parts of the ovules in Anacardiaceae and Burseraceae are linked with the different direction of ovule curvature. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 499–571.  相似文献   

2.
Exudates of the rosid clade of the eudicots have been surveyed and characterized by carbon-13 and proton nuclear magnetic resonance spectroscopy. Of 554 samples divided roughly equally between the subclades fabids and malvids, about two-fifths are resins, a third gums, one-ninth gum resins, one-twelfth kinos, and the remaining not affiliated with these four main molecular classes. Two small new molecular classes, respectively from the Clusiaceae (xanthics) and the Zygophyllaceae (guaiacs), are identified and described.  相似文献   

3.
Within the rosid order Malpighiales, Rhizophoraceae and Erythroxylaceae (1) are strongly supported as sisters in molecular phylogenetic studies and possibly form a clade with either Ctenolophonaceae (2) or with Linaceae, Irvingiaceae and Caryocaraceae (less well supported) (3). In order to assess the validity of these relationships from a floral structural point of view, these families are comparatively studied for the first time in terms of their floral morphology, anatomy and histology. Overall floral structure reflects the molecular results quite well and Rhizophoraceae and Erythroxylaceae are well supported as closely related. Ctenolophonaceae share some unusual floral features (potential synapomorphies) with Rhizophoraceae and Erythroxylaceae. In contrast, Linaceae, Irvingiaceae and Caryocaraceae are not clearly supported as a clade, or as closely related to Rhizophoraceae and Erythroxylaceae, as their shared features are probably mainly symplesiomorphies at the level of Malpighiales or a (still undefined) larger subclade of Malpighales, rather than synapomorphies. Rhizophoraceae and Erythroxylaceae share (among other features) conduplicate petals enwrapping stamens in bud, antepetalous stamens longer than antesepalous ones, a nectariferous androecial tube with attachment of the two stamen whorls at different positions: one whorl on the rim, the other below the rim of the tube, the ovary shortly and abruptly dorsally bulged and the presence of a layer of idioblasts (laticifers?) in the sepals and ovaries. Ctenolophonaceae share with Rhizophoraceae and/or Erythroxylaceae (among other features) sepals with less than three vascular traces, a short androgynophore, an ovary septum thin and severed or completely disintegrating during development, leading to a developmentally secondarily unilocular ovary, a zigzag‐shaped micropyle and seeds with an aril. Special features occurring in families of all three groupings studied here are, for example, synsepaly, petals not retarded and thus forming protective organs in floral bud, petals postgenitally fused or hooked together in bud, androecial tube and petals fusing above floral base, androecial corona, apocarpous unifacial styles, nucellus thin and long, early disintegrating (before embryo sac is mature), and nectaries on the androecial tube. Some of these features may be synapomorphies for the entire group, if it forms a supported clade in future molecular studies, or for subgroups thereof. Others may be plesiomorphies, as they also occur in other Malpighiales or also in Celastrales or Oxalidales (COM clade). The occurrence of these features within the COM clade is also discussed. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 331–416.  相似文献   

4.
5.
6.
Reproductive structures and systematics of Buxaceae   总被引:3,自引:0,他引:3  
Buxaceae belong to a grade of families near the base of eudicots. Flowers of these families are characterized by a variable number and arrangement of floral organs. In this study, the anthetic structure of the gynoecium and androecium of representatives of all genera of Buxaceae were comparatively studied, and observations on the flowering processes and pollination biology were made. Styloceras and Notobuxus were studied in detail for the first time. Various features of the morphological analysis support our earlier molecular phylogenetic study. Shared reproductive characters among Sarcococca , Pachysandra and Styloceras are the occurrence of two (rarely three) carpels, the lack of interstylar nectaries, a micropyle formed by both integuments, attractive stamens in male flowers, and fleshy fruits. In addition, Styloceras and Pachysandra share a secondary partition in the ovary. Notobuxus does not seem to be clearly distinct from Buxus . Both have a similar inflorescence and perianth structure; female flowers have three carpels, interstylar nectaries, micropyles formed by the inner integument, rudimentary arils, and they develop into capsular fruits; in male flowers stamens are sessile and the central pistillode is lacking in some species. Thus, it is questionable to justify a separation of Buxus and Notobuxus at genus level. The results further strongly support the placement of Buxaceae among basal eudicots.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 193–228.  相似文献   

7.
Morphological evidence for resolving relationships among arachnid orders was surveyed and assembled in a matrix comprising 59 euchelicerate genera (41 extant, 18 fossil) and 202 binary and unordered multistate characters. Parsimony analysis of extant genera recovered a monophyletic Arachnida with the topology (Palpigradi (Acaromorpha (Tetrapulmonata (Haplocnemata, Stomothecata nom. nov. )))), with Acaromorpha containing Ricinulei and Acari, Tetrapulmonata containing Araneae and Pedipalpi (Amblypygi, Uropygi), Haplocnemata (Pseudoscorpiones, Solifugae) and Stomothecata (Scorpiones, Opiliones). However, nodal support and results from exploratory implied weights analysis indicated that relationships among the five clades were effectively unresolved. Analysis of extant and fossil genera recovered a clade, Pantetrapulmonata nom nov. , with the topology (Trigonotarbida (Araneae (Haptopoda (Pedipalpi)))). Arachnida was recovered as monophyletic with the internal relationships (Stomothecata (Palpigradi, Acaromorpha (Haplocnemata, Pantetrapulmonata))). Nodal support and exploratory implied weights indicated that relationships among these five clades were effectively unresolved. Thus, some interordinal relationships were strongly and/or consistently supported by morphology, but arachnid phylogeny is unresolved at its deepest levels. Alternative hypotheses proposed in the recent literature were evaluated by constraining analyses to recover hypothesized clades, an exercise that often resulted in the collapse of otherwise well-supported clades. These results suggest that attempts to resolve specific nodes based on individual characters, lists of similarities, evolutionary scenarios, etc., are problematic, as they ignore broader impacts on homoplasy and analytical effects on non-target nodes.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 150 , 221–265.  相似文献   

8.
Androecial development and structure as well as floral vasculature of six selected species of Bombacoideae and of several smaller lineages of the Malvatheca clade (Malvaceae s.l.) were studied. All studied taxa share a similar pattern of androecial development: initially, five antepetalous/antetepalous and five alternipetalous/alternitepalous primary androecial primordia develop on a ring wall. Two elongate secondary androecial primordia form on each antepetalous/antetepalous sector. At anthesis the androecium consists of an androecial tube crowned by five androecial lobes. Each of these lobes is the developmental product of an alternipetalous/alternitepalous primary androecial primordium and its two neighbouring antepetalous/antetepalous secondary androecial primordia. The elongate, sessile androecial units are positioned along the lateral margins of the androecial lobes and in the distal part of the androecial tube. Seen in the light of the most recent studies of floral development and phylogeny of the Malvaceae and the Malvales as a whole, our data indicate that i) elongate, sessile androecial units are ancestral in the Malvatheca clade, that ii) an obdiplostemonous floral ground plan is a synapomorphy for the Malvaceae, and that iii) diplostemony is most likely ancestral in the Malvales.  相似文献   

9.
A brief survey is presented on fossil reproductive structures of early Angiosperms from the Lower and mid-Cretaceous and at the same time on the reproductive structures of those extant Angiosperms which resemble most closely these fossils and which seem to be especially primitive also on other grounds: a first group (Degeneriaceae, Himantandraceae, Eupomatiaceae, Austrobaileyaceae) possessing relatively complicated and conspicuous flowers with elaborated inner staminodes, a second group (Chloranthaceae, Trimeniaceae, Amborellaceae) possessing small and relatively simple, inconspicuous flowers with peculiar features in the carpels, and a third group (Winteraceae) possessing flowers with unusual variability in organ number and size. The three groups exhibit a certain diversity in pollination biology, although cantharophily seems to prevail, however different the cantharophily character syndromes may be between the groups. In the extant primitiveMagnoliidae variability occurs on other morphological levels than in the higher advanced Angiosperms. This has to be taken into consideration in evaluations of the systematic relationships of the various groups of theMagnoliidae. Presumably often their relationships are closer than it may appear at first sight. This is also true for the three groups here discussed.  相似文献   

10.
A survey of our own comparative studies on several larger clades of rosids and over 1400 original publications on rosid flowers shows that floral structural features support to various degrees the supraordinal relationships in rosids proposed by molecular phylogenetic studies. However, as many apparent relationships are not yet well resolved, the structural support also remains tentative. Some of the features that turned out to be of interest in the present study had not previously been considered in earlier supraordinal studies. The strongest floral structural support is for malvids (Brassicales, Malvales, Sapindales), which reflects the strong support of phylogenetic analyses. Somewhat less structurally supported are the COM (Celastrales, Oxalidales, Malpighiales) and the nitrogen-fixing (Cucurbitales, Fagales, Fabales, Rosales) clades of fabids, which are both also only weakly supported in phylogenetic analyses. The sister pairs, Cucurbitales plus Fagales, and Malvales plus Sapindales, are structurally only weakly supported, and for the entire fabids there is no clear support by the present floral structural data. However, an additional grouping, the COM clade plus malvids, shares some interesting features but does not appear as a clade in phylogenetic analyses. Thus it appears that the deepest split within eurosids–that between fabids and malvids - in molecular phylogenetic analyses (however weakly supported) is not matched by the present structural data. Features of ovules including thickness of integuments, thickness of nucellus, and degree of ovular curvature, appear to be especially interesting for higher level relationships and should be further explored. Although features of interest are not necessarily stable at the level of a large clade, they do show a considerable concentration in particular clades and are rare or lacking in others. This may be viewed as a special trend for this feature to evolve in this group or to be conserved as a synapomorphy (or a combination of both).  相似文献   

11.
Zhang W  Yao Y  Ren D 《ZooKeys》2011,(130):185-198
A new genus with a new species of Saldidae, Brevrimatus pulchalifergen. et sp. n., is described and illustrated. The fossil specimen was found from the Early Cretaceous Yixian Formation of Duolun County, Inner Mongolia, China. Phylogenetic analyses within Saldidae were performed, and the results indicate Brevrimatus pulchalifergen. et sp. n. should be assigned to the subfamily Chiloxanthinae.  相似文献   

12.
The osteology of the early Eocene (about 50 mya) avian taxon Pseudasturidae Mayr, 1998 is revised and its phylogenetic affinities are analysed. Members of the Pseudasturidae are known from abundant and excellently preserved skeletal material, both complete skeletons on slabs as well as isolated, three-dimensional bones. Although this taxon is thus among the best represented of all small early Tertiary birds, its systematic affinities were unknown so far. Derived osteological characters which are visible in newly recognized specimens from the Lower Eocene London Clay of England most convincingly support classification of the Pseudasturidae into the Psittaciformes (parrots). Both, in overall morphology and in terms of derived characters, the tarsometatarsus of the Pseudasturidae closely resembles that of the Eocene Quercypsittidae, which were assigned to the Psittaciformes by Mourer-Chauviré (1992 ). The Pseudasturidae are considered to be stem-group representatives of the Psittaciformes and the sister taxon of all other known psittaciform birds. The Eocene taxon lacks the specialized bill morphology of crown-group Psittaciformes of the Psittacidae. Several other osteological differences between the Pseudasturidae and the Psittacidae probably are also functionally correlated with the specialized feeding technique of the latter.  © 2002 The Linnean Society of London, Zoological Journal of the Linnean Society , 2002, 136 , 715–729.  相似文献   

13.
  • Enantiostyly is a floral polymorphism in which two floral forms in the same species differ in deflection of the stigma to right or left position. In monomorphic enantiostylous plants, flowers of the two morphs occur within the same individual, usually in the same proportion. In self‐compatible species the function of monomorphic enantiostyly is proposed to increase outcrossing rates and offer a reproductive advantage under pollination limitation. Enantiostylous species are usually self‐compatible and show heteranthery, with poricide anthers and pollen as pollinator reward; however, there are families, such as Vochysiaceae, that have different characteristics.
  • We analysed the reproductive system and pollination biology of Qualea parviflora and Q. multiflora, two enantiostylous species from the Brazilian Cerrado that have specific morphological and physiological traits. For this, we characterized flower traits, performed hand pollinations and studied floral visitors.
  • We found no differences between morphs in the proportion of flowers, nectar produced or its concentration, pollen quantity and fruit set. Both species were self‐incompatible and quite generalist regarding floral visitors.
  • Enantiostyly in self‐incompatible plants seems to confer a reproductive advantage by reducing self‐interference resulting from stigma clogging. This novel result helps to expand our knowledge on this complex floral polymorphism and opens new avenues for future research on this topic.
  相似文献   

14.
BACKGROUND AND AIMS: Eriocaulaceae (Poales) is currently divided in two subfamilies: Eriocauloideae, which comprises two genera and Paepalanthoideae, with nine genera. The floral anatomy of Actinocephalus polyanthus, Leiothrix fluitans, Paepalanthus chlorocephalus, P. flaccidus and Rondonanthus roraimae was studied here. The flowers of these species of Paepalanthoideae are unisexual, and form capitulum-type inflorescences. Staminate and pistillate flowers are randomly distributed in the capitulum and develop centripetally. This work aims to establish a floral nomenclature for the Eriocaulaceae to provide more information about the taxonomy and phylogeny of the family. METHODS: Light microscopy, scanning electron microscopy and chemical tests were used to investigate the floral structures. KEY RESULTS: Staminate and pistillate flowers are trimerous (except in P. flaccidus, which presents dimerous flowers), and the perianth of all species is differentiated into sepals and petals. Staminate flowers present an androecium with scale-like staminodes (not in R. roraimae) and fertile stamens, and nectariferous pistillodes. Pistillate flowers present scale-like staminodes (except for R. roraimae, which presents elongated and vascularized staminodes), and a gynoecium with a hollow style, ramified in stigmatic and nectariferous portions. CONCLUSIONS: The scale-like staminodes present in the species of Paepalanthoideae indicate a probable reduction of the outer whorl of stamens present in species of Eriocauloideae. Among the Paepalanthoideae genera, Rondonanthus, which is probably basal, shows vascularized staminodes in their pistillate flowers. The occurrence of nectariferous pistillodes in staminate flowers and that of nectariferous portions of the style in pistillate flowers of Paepalanthoideae are emphasized as nectariferous structures in Eriocaulaceae.  相似文献   

15.
Computational methods for estimating diversification rates from extant species phylogenetic trees have become abundant in evolutionary research. However, little evidence exists about how their outcome compares to a complementary and direct source of information: the fossil record. Furthermore, there is virtually no direct test for the congruence of evolutionary rates based on these two sources. This task is only achievable in clades with both a well‐known fossil record and a complete phylogenetic tree. Here, we compare the evolutionary rates of ruminant mammals as estimated from their vast paleontological record—over 1200 species spanning 50 myr—and their living‐species phylogeny. Significantly, our results revealed that the ruminant's fossil record and phylogeny reflect congruent evolutionary processes. The concordance is especially strong for the last 25 myr, when living groups became a dominant part of ruminant diversity. We found empirical support for previous hypotheses based on simulations and neontological data: The pattern captured by the tree depends on how clade specific the processes are and which clades are involved. Also, we report fossil evidence for a postradiation speciation slowdown coupled with constant, moderate extinction in the Miocene. The recent deceleration in phylogenetic rates is connected to rapid extinction triggered by recent climatic fluctuations.  相似文献   

16.
Background and Aims Fumarioideae (20 genera, 593 species) is a clade of Papaveraceae (Ranunculales) characterized by flowers that are either disymmetric (i.e. two perpendicular planes of bilateral symmetry) or zygomorphic (i.e. one plane of bilateral symmetry). In contrast, the other subfamily of Papaveraceae, Papaveroideae (23 genera, 230 species), has actinomorphic flowers (i.e. more than two planes of symmetry). Understanding of the evolution of floral symmetry in this clade has so far been limited by the lack of a reliable phylogenetic framework. Pteridophyllum (one species) shares similarities with Fumarioideae but has actinomorphic flowers, and the relationships among Pteridophyllum, Papaveroideae and Fumarioideae have remained unclear. This study reassesses the evolution of floral symmetry in Papaveraceae based on new molecular phylogenetic analyses of the family.Methods Maximum likelihood, Bayesian and maximum parsimony phylogenetic analyses of Papaveraceae were conducted using six plastid markers and one nuclear marker, sampling Pteridophyllum, 18 (90 %) genera and 73 species of Fumarioideae, 11 (48 %) genera and 11 species of Papaveroideae, and a wide selection of outgroup taxa. Floral characters recorded from the literature were then optimized onto phylogenetic trees to reconstruct ancestral states using parsimony, maximum likelihood and reversible-jump Bayesian approaches.Key Results Pteridophyllum is not nested in Fumarioideae. Fumarioideae are monophyletic and Hypecoum (18 species) is the sister group of the remaining genera. Relationships within the core Fumarioideae are well resolved and supported. Dactylicapnos and all zygomorphic genera form a well-supported clade nested among disymmetric taxa.Conclusions Disymmetry of the corolla is a synapomorphy of Fumarioideae and is strongly correlated with changes in the androecium and differentiation of middle and inner tepal shape (basal spurs on middle tepals). Zygomorphy subsequently evolved from disymmetry either once (with a reversal in Dactylicapnos) or twice (Capnoides, other zygomorphic Fumarioideae) and appears to be correlated with the loss of one nectar spur.  相似文献   

17.
Some of the most vexing problems of deep level relationship that remain in angiosperms involve the superrosids. The superrosid clade contains a quarter of all angiosperm species, with 18 orders in three subclades (Vitales, Saxifragales and core rosids) exhibiting remarkable morphological and ecological diversity. To help resolve deep-level relationships, we constructed a high-quality chromosome-level genome assembly for Tiarella polyphylla (Saxifragaceae) thus providing broader genomic representation of Saxifragales. Whole genome microsynteny analysis of superrosids showed that Saxifragales shared more synteny clusters with core rosids than Vitales, further supporting Saxifragales as more closely related with core rosids. To resolve the ordinal phylogeny of superrosids, we screened 122 single copy nuclear genes from genomes of 36 species, representing all 18 superrosid orders. Vitales were recovered as sister to all other superrosids (Saxifragales + core rosids). Our data suggest dramatic differences in relationships compared to earlier studies within core rosids. Fabids should be restricted to the nitrogen-fixing clade, while Picramniales, the Celastrales-Malpighiales (CM) clade, Huerteales, Oxalidales, Sapindales, Malvales and Brassicales formed an “expanded” malvid clade. The Celastrales-Oxalidales-Malpighiales (COM) clade (sensu APG IV) was not monophyletic. Crossosomatales, Geraniales, Myrtales and Zygophyllales did not belong to either of our well-supported malvids or fabids. There is strong discordance between nuclear and plastid phylogenetic hypotheses for superrosid relationships; we show that this is best explained by a combination of incomplete lineage sorting and ancient reticulation.  相似文献   

18.
19.
20.
In order to investigate the genetic relationships between Dermanyssus gallinae (Metastigmata: Dermanyssidae) (de Geer) isolates from poultry farms in Italy and other European countries, phylogenetic analysis was performed using a portion of the cytochrome c oxidase subunit 1 (cox1) gene of the mitochondrial DNA and the internal transcribed spacers (ITS1+5.8S+ITS2) of the ribosomal DNA. A total of 360 cox1 sequences and 360 ITS+ sequences were obtained from mites collected on 24 different poultry farms in 10 different regions of Northern and Southern Italy. Phylogenetic analysis of the cox1 sequences resulted in the clustering of two groups (A and B), whereas phylogenetic analysis of the ITS+ resulted in largely unresolved clusters. Knowledge of the genetic make‐up of mite populations within countries, together with comparative analyses of D. gallinae isolates from different countries, will provide better understanding of the population dynamics of D. gallinae. This will also allow the identification of genetic markers of emerging acaricide resistance and the development of alternative strategies for the prevention and treatment of infestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号