首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trichloroethylene, a common industrial solvent and a metabolic precursor of chloral hydrate, occurs widely in the environment. Chloral hydrate, which is also used as a hypnotic, has been found to condense spontaneously with tryptamine, in vivo, to give rise to a highly unpolar 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) that has a structural analogy to the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Earlier studies have revealed the relative permeability of the molecule through the blood-brain barrier and its ability to induce Parkinson-like symptoms in rats. In this study, we report that TaClo induces an apoptotic pathway in the human neuroblastoma cell line, SK-N-SH, involving the translocation of mitochondrial cytochrome c to the cytosol and activation of caspase 3. TaClo-induced apoptosis shows considerable differences from that mediated by other Parkinson-inducing agents such as MPTP, rotenone and manganese. Although it is not clear if the clinically administered dosage of chloral hydrate or the relatively high environmental levels of trichloroethylene could lead to an onset of Parkinson's disease, the spontaneous in vivo formation of TaClo and its pro-apoptotic properties, as shown in this report, should be considered.  相似文献   

2.
Cytoskeletal components play an important role in maintaining cellular architecture and internal organization, with clear involvement of defining cell shape, in cell division and other cellular processes, such as neurite extension and maintenance. Alterations of cytoskeleton in human neuroblastoma SK-N-SH cells after exposure to different concentrations of tri-ocresyl phosphate (TOCP) for 12 hr were investigated. TOCP decreased the cell viability in a dose-dependent manner; the viability of SK-N-SH was reduced to approximately 50% of baseline after a 12-hour exposure to TOCP at high concentration (5 mM). Biochemical characterization by western blotting revealed that 1 and 5 mM concentrations of TOCP significantly inhibited the expression of neurofilament high molecular weight protein (NF-H), and that 5 mM TOCP inhibited expression of microtubule-associated protein 2c and tau protein, but not β-actin. Indirect immunofluorescence analysis revealed that higher concentrations of TOCP decreased the length of neuritis and changed the structure of microfilaments, which are associated with NF-H. In addition, activities of neuropathy target esterase and acetylcholinesterase were significantly reduced after exposure to 5 mM TOCP for 12 hr. Together, these results suggested that the loss of cytoskeletal components is the early event during the process of TOCP toxicity towards human neuroblastoma SK-N-SH cells.  相似文献   

3.
The sarafotoxins and endothelins are approximately 25-residue peptides that spontaneously fold into a defined tertiary structure with specific pairing of four cysteines into two disulfide bonds. Their structures show an interesting topological similarity to the core of the metalloproteinase interaction sites of the tissue inhibitors of metalloproteinases. Previous work indicates that sarafotoxins and endothelins can be engineered to eliminate or greatly reduce their vasopressive action and that their structural framework can withstand multiple sequence changes. When sarafotoxin 6b, which possesses modest matrix metalloproteinase inhibitory activity, was C-terminally truncated to remove its toxic vasopressive activity, the metalloproteinase inhibitory activity was essentially abolished. However, further changes, based on the sequences of peptides selected from libraries of sarafotoxin variants or suggested by analogy with tissue inhibitors of metalloproteinases, progressively enhanced the matrix metalloproteinase inhibitory activity. Peptide variants with multiple substitutions folded correctly and formed native disulfide bonds. Improvements in matrix metalloproteinase affinity have generated a peptide with micromolar K(i) values for matrix metalloproteinase-1 and -9 that are selective inhibitors of different metalloproteinases. Characterization of its solution structure indicates a close similarity to sarafotoxin but with a more extended C-terminal helix. The effects of N-acetylation and other changes, as well as docking studies, support the hypothesis that the engineered sarafotoxins bind to matrix metalloproteinases in a manner analogous to the tissue inhibitors of metalloproteinases.  相似文献   

4.
Calmodulin (CaM) mediates the Ca(2+)-dependent activation of many enzyme systems in accordance with its cellular localization. We have described previously a muscarinic receptor-mediated translocation of CaM from membranes into the cytosol of SK-N-SH human neuroblastoma cells. To explore the potential targets (CaM-binding proteins, CaMBP) for CaM upon translocation, a photoreactive CaM derivative was introduced into living SK-N-SH cells using a scrape-loading technique. Scrape-loading incorporated rhodamine isothiocyanate-labeled CaM with an efficiency of 38%. CaM-diazopyruvamide (CaM-DAP), a Ca(2+)-dependent and CaM-specific probe, was also introduced into the cells. The muscarinic agonist carbachol stimulated a translocation of CaM from membranes into cytosol in CaM-DAP-loaded SK-N-SH cells. Upon photochemical cross-linking, cross-linked adducts of CaM-CaMBP were detected by immunoblotting with anti-CaM antibody. Carbachol stimulated increased photoaffinity labeling of three proteins with relative adduct molecular masses of 70, 120, and 180 kDa. The time course of labeling for the 70- and 120-kDa adducts showed maximal increased by 15-30 min. The 180-kDa adduct displayed a slower time course of maximal labeling, with increases maintained for 2-4 h. Subtracting the molecular mass of CaM, carbachol stimulated binding to CaMBPs of 55, 105, and 163 kDa. Predominant cellular CaMBP were identified using a biotinylated CaM overlay procedure. Western blot analysis indicated the expression of specific CaM-dependent enzymes such as calcineurin, phosphodiesterase, the beta-isoform (rat brain) of CaM kinase II, and Ca(2+)-ATPase. Numerous cytoskeletal CaMBP were expressed such as microtubule-associated protein-2, spectrin, tubulin, caldesmon, adducin, and neuromodulin. Of the CaMBP expressed, phosphodiesterase, calcineurin, caldesmon, and adducin cross-linked with CaM-DAP in the loaded SK-N-SH cells. Carbachol stimulated the time-dependent CaM-DAP labeling of calcineurin and adducin. This study demonstrates the novel incorporation of a photoreactive CaM derivative into living cells, as well as muscarinic receptor-activated CaM-DAP interaction with several cellular CaMBP. We postulate that carbachol-stimulated CaM translocation in SK-N-SH cells may affect the activity of CaM-dependent enzymes and may alter aspects of cytoskeletal function.  相似文献   

5.
Shortened gestation is a major cause of infant mortality and morbidity. Evidence from both human and animal studies suggests that essential fatty acids of the n-6 and n-3 series play important and modifiable roles in gestational duration. We examined the influence of linolenic acid (LnA) vs. docosahexaenoic acid (DHA) on rat reproductive tissue prostaglandin (PG) and matrix metalloproteinase (MMP) indices of gestational duration. By varying the oil source of the diet, AIN-93G diets were constructed to provide either 0.7 energy % (en%) LnA, the current US intake of n-3 fatty acids, or 0.7 en% DHA. In addition, enhanced levels of 2.0 en% LnA or 2.0 e% DHA diets were also constructed. All diets contained approximately 6.0 en% linoleic acid (LA), the current US intake of LA. Four groups of 10 female rats were time-mated and fed the respective diets from conception through Day 20 of gestation. Day 20 uterus and placenta DHA were significantly increased by 160-180% by the 0.7 en% DHA diet, and by 250-350% by the 2.0 en% DHA diets in comparison to 0.7 en% LnA diet. DHA diets also significantly reduced uterus and placenta arachidonic acid content. Day 20 placenta and uterus PGE(2) and placenta PGF(2alpha) production rates were significantly reduced by 27-47% in the 0.7 en% DHA group in comparison to 0.7 en% LnA. Increasing LnA to 2.0 en% was without effect. Providing DHA at the enhanced 2.0 en% did not significantly enhance the suppression of PG production. Placenta active MMP-2 and active MMP-9 (gelatinase) production was suppressed significantly by 30-43% in the 0.7 en% DHA group in comparison to the 0.7 en% LnA group, and 2.0 en% DHA did not enhance this suppression. Placenta collagenase activity comprising the sum of MMP-1, MMP-8 and MMP-13 was also suppressed by 60% in the 0.7 en% DHA diet group with no additional effect with 2.0 en% DHA provision. These results suggest that substituting DHA for LnA even at the current US n-3 fatty acid intake of 0.7 en% is effective in suppressing indices of premature delivery and shortened gestation. Increasing LnA intake by 3-fold to 2.0 en% is not effective. The form of dietary n-3 fatty acid, DHA vs. LnA, appears to be more important than the amount.  相似文献   

6.
Matrix metalloproteinase (MMP)-3 inhibited human MDA-MB-231 breast cancer cell invasion through reconstituted basement membrane in vitro. Inhibition of invasion was dependent upon plasminogen and MMP-3 activation, was impaired by the peptide MMP-3 inhibitor Ac-Arg-Cys-Gly-Val-Pro-Asp-NH2 and was associated with: rapid MMP-3-mediated plasminogen degradation to microplasminogen and angiostatin-like fragments; the removal of single-chain urokinase plasminogen activator from MDA-MB-231 cell membranes; impaired membrane plasminogen association; reduced rate of tissue plasminogen activator (t-PA) and membrane-mediated plasminogen activation; and reduced laminin-degrading capacity. Purified human plasminogen lysine binding site-1 (kringles 1-3) exhibited a similar capacity to inhibit MDA-MB-231 invasion, impair t-PA and cell membrane-mediated plasminogen activation and impair laminin degradation by plasmin. Our data provide evidence that MMP-3 can inhibit breast tumour cell invasion in vitro by a mechanism involving plasminogen degradation to fragments that limit plasminogen activation and the degradation of laminin. This supports the hypothesis that MMP-3, under certain conditions, may protect against tumour invasion, which would help to explain why MMP-3 expression, associated with benign and early stage breast tumours, is frequently lost in advanced stage, aggressive, breast disease.  相似文献   

7.
Regulation of matrix metalloproteinase expression in tumor invasion.   总被引:87,自引:0,他引:87  
  相似文献   

8.
Fibroblasts, a major constituent of gingival connective tissue, can produce immunoregulatory cytokines and proteolytic enzymes that may contribute to tissue destruction. In this study, we evaluated the production of matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and plasminogen activators by gingival fibroblasts stimulated with lipopolysaccharides (LPS) produced by periodontopathogens, including Actinobacillus actinomycetemcomitans. In addition, changes in the expression and phosphorylation state of fibroblast intracellular signaling proteins induced by A. actinomycetemcomitans LPS were characterized using antibody microarrays. We showed that A. actinomycetemcomitans LPS induced the production of a 50 kDa plasminogen activator, MMP-2 and, to a lesser extent, MMP-3 by fibroblasts. The stimulation of fibroblasts with A. actinomycetemcomitans LPS also resulted in the overproduction of TIMP-1, but had no effect on the production of TIMP-2. Comparable responses were also obtained with Porphyromonas gingivalis and Fusobacterium nucleatum subsp. nucleatum LPS. The results of the microarray analyses showed that A. actinomycetemcomitans LPS induced changes in the phosphorylation state and expression of gingival fibroblast intracellular signaling proteins. More specifically, they suggested that A. actinomycetemcomitans LPS may induce both Jun N-terminus protein-serine kinases (JNK) and mitogen-activated protein-serine kinase p38 alpha (p38alpha MAPK) pathway activation, leading to increased activator protein-1 (AP-1) and nuclear factor kappa-B (NFkappaB) activities, which in turn can stimulate MMP-2, MMP-3, TIMP-1, and urokinase-type plasminogen activator (uPA) expression. This may contribute to periodontal connective tissue destruction.  相似文献   

9.
Along with degradation of type IV collagen in basement membrane, destruction of the stromal collagens, types I and III, is an essential step in the invasive/metastatic behavior of tumor cells, and it is mediated, at least in part, by interstitial collagenase 1 (matrix metalloproteinase 1 (MMP-1)). Because A2058 melanoma cells produce substantial quantities of MMP-1, we used these cells as models for studying invasion of type I collagen. With a sensitive and quantitative in vitro invasion assay, we monitored the ability of these cells to invade a matrix of type I collagen and the ability of a serine proteinase inhibitor and all-trans-retinoic acid to block invasion. Although these cells produce copious amounts of MMP-1, they do not invade collagen unless they are co-cultured with fibroblasts or with conditioned medium derived from fibroblasts. Our studies indicate that a proteolytic cascade that depends on stromal/tumor cell interactions facilitates the ability of A2058 melanoma cells to invade a matrix of type I collagen. This cascade activates latent MMP-1 and involves both serine proteinases and MMPs, particularly stromelysin 1 (MMP-3). All-trans-retinoic acid (10(-6) M) suppresses the invasion of tumor cells by several mechanisms that include suppression of MMP synthesis and an increase in levels of tissue inhibitor of metalloproteinases 1 and 2. We conclude that invasion of stromal collagen by A2058 melanoma cells is mediated by a novel host/tumor cell interaction in which a proteolytic cascade culminates in the activation of pro-MMP-1 and tumor cell invasion.  相似文献   

10.
Novel sulfonamide matrix metalloproteinase inhibitors of general formula (9) were synthesised by a route involving a stereoselective conjugate addition reaction. Enzyme selectivity was found to be dependant on the nature of the sulfonamide substituents. Compounds (9f, 9q) are potent selective collagenase inhibitors with good oral bioavailability.  相似文献   

11.
Interaction between platelet and carcinoma cell contributes to pathogenesis of cancer-related thrombosis and metastasis. This study investigated whether physical exercise affects platelet-nasopharyngeal carcinoma cell (NPC) interaction and platelet-promoted tissue factor (TF) and matrix metalloproteinase (MMP) activities of NPC. Thirty sedentary men performed on three occasions moderate-intensity exercise [MIE, 60% maximal oxygen consumption (V(.)o(2max)) for 40 min] and high-intensity exercise (HIE, up to V(.)o(2max)), with and without warm-up exercise (WUE, 60% V(.)o(2max) for 20 min) on a bicycle ergometer. Before and immediately after exercise, platelet-NPC aggregation, the TF, MMP-2 and MMP-9 expressions and activities, and TF pathway inhibitor (TFPI) and tissue inhibitor of MMP-1 levels of NPC and platelet were measured. The results of this study demonstrated that HIE enhanced platelet-NPC aggregation in the presence of fibrinogen and was accompanied by increased platelet-promoted TF activity, expression of NPC, decreased platelet-promoted MMP-2 and MMP-9 activities, and TFPI release of NPC, whereas these alterations to HIE on platelet-NPC interactions were ameliorated by WUE pretreatment. Conversely, MIE reduced the formation of platelet-NPC aggregates, but did not change the TF, TFPI, MMP-2, MMP-9, tissue inhibitor of MMP activities, and/or levels of NPC mediated by platelet. It is concluded that HIE may enhance aggregation and coagulation and reduce MMP bioactivity related to platelet-NPC interactions, by raising the binding affinity to fibrinogen and TF activity and expression and lowering TFPI release and MMP-2 and -9 activities. These effects on HIE diminish after WUE. However, MIE minimizes the risk of thrombosis induced by platelet-NPC interactions.  相似文献   

12.
Studies of the structural basis of the interactions of tissue inhibitors of metalloproteinases (TIMPs) and matrix metalloproteinases (MMPs) may provide clues for designing MMP-specific inhibitors. In this paper we report combinations of mutations in the major MMP-binding region that enhance the specificity of N-TIMP-1. Mutants with substitutions for residues 4 and 68 were characterized and combined with previously studied Thr(2) mutations to generate mutants with improved selectivity or binding affinity to specific MMPs. Some combinations of mutations had non-additive effects on DeltaG of binding to MMPs, suggesting interactions between subsites in the reactive site. The T2L/V4S mutation generates an inhibitor that binds to MMP-2 20-fold more tightly than to MMP-3(DeltaC) and over 400-fold more tightly than to MMP-1. The T2S/V4A/S68Y mutant is the strongest inhibitor for stromelysin-1 among all mutants characterized to date, with an apparent K(i) for MMP-3(DeltaC) in the picomolar range. A third mutant, T2R/V4I, has no detectable inhibitory activity for MMP-1 but is an effective inhibitor of MMP-2 and -3. These selective TIMP variants may provide useful tools for investigation of biological roles of specific MMPs and for possible therapy of MMP-related diseases.  相似文献   

13.
14.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is involved in the synthesis of RNA. Its expression is up-regulated in many tumor cell lines. In this study, we investigated the distribution of hnRNP A2/B1 in the nuclear matrix, including its co-localization with expression products of related genes. Results from 2-DE PAGE and MS showed that hnRNP A2/B1 is involved with components of nuclear matrix proteins of SK-N-SH cells, and that its expression level is down-regulated after retinoic acid (RA) treatment. Protein immunoblotting results further confirm the existence of hnRNP A2/B1 in the nuclear matrix, as well as its down-regulation after RA treatment. Immunofluorescence microscopy observation showed that hnRNP A2/B1 localized in nuclear matrix of SK-N-SH cells and its distribution regions were altered after RA treatment. Laser scanning confocal microscopy observation showed that hnRNP A2/B1 co-localized with c-Myc, c-Fos, P53, and Rb in SK-N-SH cells. The co-localized region was altered as a result of RA treatment. Our data proved that hnRNP A2/B1 is a nuclear matrix protein and can be up-regulated in human neuroblastoma. The expression and distribution of hnRNP A2/B1 can affect the differentiation of SK-N-SH cells, as well as its co-localization with related oncogenes and tumor suppressor genes.  相似文献   

15.
To probe the mechanism of stromelysin (SLN)-catalyzed peptide hydrolysis, we determined the pH dependence of kc/Km and solvent deuterium isotope effects on kc and kc/Km. pH dependencies of kc/Km were determined for the SLN-catalyzed hydrolysis of three peptides: Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Nle-NH2,Arg-Pro-Ala-Pro-Gln-Gln- Phe-Phe - Gly-Leu-NleNH2, and N-acetyl-Arg-Pro-Ala-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Nle-NH2 (cleavage at Gln-Phe bond). The pH dependencies are all bell-shaped with shoulders that extend from pH 7.5 to 8.5. The existence of a shoulder indicates that the reaction mechanism involves at least two routes to products. These curves are governed by three proton ionizations with pKa values of 5.4, 6.1, and 9.5. The solvent isotope effect measurements provided the following values: D(kc/Km) = 0.80 +/- 0.05 and D(kc) = 1.58 +/- 0.05. That D(kc/Km) and D(kc) are different suggests that the rate-limiting transition states for the processes governed by kc/Km and kc cannot be the same. We use these results, together with analogy to thermolysin catalysis, to develop a mechanism for SLN catalysis.  相似文献   

16.
17.
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for the membrane type 1 matrix metalloproteinase (MT1-MMP)-dependent activation of pro-MMP-2 on the cell surface. MT1-MMP-bound TIMP-2 has been shown to function as a receptor for secreted pro-MMP-2, resulting in the formation of a trimolecular complex. In the presence of uncomplexed active MT1-MMP, the prodomain of cell surface-associated MMP-2 is cleaved, and activated MMP-2 is released. However, the behavior of MT1-MMP-bound TIMP-2 during MMP-2 activation is currently unknown. In this study, (125)I-labeled recombinant TIMP-2 ((125)I-rTIMP-2) was used to investigate the fate of TIMP-2 during pro-MMP-2 activation by HT1080 and transfected A2058 cells. HT1080 and A2058 cells transfected with MT1-MMP cDNA (but not vector-transfected A2058 cells) were able to bind (125)I-rTIMP-2, to activate pro-MMP-2, and to process MT1-MMP into an inactive 43-kDa form. Under these conditions, (125)I-rTIMP-2 bound to the cell surface was rapidly internalized and degraded in intracellular organelles through a bafilomycin A(1)-sensitive mechanism, and (125)I-bearing low molecular mass fragment(s) were released in the culture medium. These different processes were inhibited by hydroxamic acid-based synthetic MMP inhibitors and rTIMP-2, but not by rTIMP-1 or cysteine, serine, or aspartic proteinase inhibitors. These results support the concept that the MT1-MMP-dependent internalization and degradation of TIMP-2 by some tumor cells might be involved in the regulation of pericellular proteolysis.  相似文献   

18.
The effects of the metalloproteinase inhibitors thiorphan and R-94138 on the matrilysin-catalyzed hydrolysis of (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2) [MOCAc-PLGL(Dpa)AR] were examined. The inhibitor constants (K(i)) of thiorphan and R-94138 for matrilysin at pH 7.5, 25 degrees C were determined to be 11.2 and 7.65 microM, respectively. From the temperature dependence of the K(i) values at pH 7.5, the standard enthalpy change (Delta H degrees ') values for the binding of matrilysin with thiorphan and R-94138 were determined to be -(18.2 +/- 0.9) and (1.65 +/- 1.07) kJ x mol(-1), respectively. The binding of matrilysin to thiorphan is exothermic and the free energy change in the complex formation depends mainly on the change in enthalpy, while the binding to R-94138 is endothermic and typically entropy-driven. Hydrophobic interactions are suggested to contribute significantly to the binding of matrilysin to R-94138 as well as to the substrate. The pH dependence of the K(i) value suggests that at least two ionizing groups with pK(a) values of 4.5 and 9.1--9.3 are involved in the binding. The matrilysin activity is regulated by ionizing groups with pK(a) values of 4.3 and 9.6. Both inhibition and hydrolysis are suggested to be controlled by the same residues in matrilysin, most likely Glu 198 and Tyr 219, respectively.  相似文献   

19.
Lee WS  Tsai WJ  Yeh PH  Wei BL  Chiou WF 《Life sciences》2006,78(11):1268-1275
We attempted to clarify the role of Ca2+ in cell death caused by beta-amyloid protein (Abeta) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in SK-N-SH neuroblastoma, respectively. Two insults both reduced cell viability in a concentration-dependent manner and induced equal cytotoxicity in the presence of 20 microM Abeta and 0.4 mM MPTP for 72 h, respectively (68+/-7 vs. 64+/-6% viability). Time-related study showed that Abeta evoked cell death occurred quickly at 24 h. Relatively, MPTP exhibited a delayed cell death significantly after 72 h of culture. Pretreating the cells with nimodipine and chelating of Ca2+ by EGTA plus 1,2-bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) successfully rescued Abeta-induced cell death but failed to prevent MPTP toxicity. ELISA determination of mono/oligonucleosomes accumulation showed the mode of cell death evoked by MPTP was presumably apoptosis while by Abeta was necrosis. SK-N-SH cells constitutively expressed the alpha(1C) subunit of L-type Ca2+ channel and exposure to Abeta or MPTP for 96 h did not further modify its expression. By contrast, alpha(1D) subunit was undetectable or low level expressed in basal condition, but was induced to express after Abeta and MPTP stimulation in a time-dependent manner. Functional assay revealed that KCl-evoked [Ca2+]i rise was significantly greater in Abeta-, but not in MPTP-treated cells when compared with control. Taken together, these results showed that Abeta and MPTP elicited different mode of cell death in SK-N-SH. Nevertheless, Ca2+ overload seems to solely display a crucial role in Abeta-induced cytotoxicity and over-expressed alpha(1D) may contribute to the disruption of cellular Ca2+ homeostasis.  相似文献   

20.
Over-expression of matrix metalloproteinases by lung fibroblasts has been blamed for much of the tissue destruction associated with airway inflammation. Because cyclic AMP is known to regulate fibroblast proliferation, as well as cytokine and extracellular matrix protein production, the current study was designed to evaluate the ability of three selective phosphodiesterase (PDE) type 4 inhibitors, rolipram, cilomilast and CI-1044, to inhibit extracellular matrix degradation. Using zymography and ELISA, we found that pro-MMP-2 release was enhanced following 24 h treatment of human lung fibroblast (MRC-5) with TGF-beta1 (10 ng/ml) or TNF-alpha (10 ng/ml), whereas PMA (0.02 microM) had no effect. One hour of pre-incubation with PDE4 inhibitors (10 microM) induced an inhibition of TNF-alpha-stimulated pro-MMP-2 release. Zymography and immunoblotting revealed that fibroblasts cultured with PMA or TNF-alpha released increased amounts of pro-MMP-1, whereas TGF-beta1 had no effect. Incubation with CI-1044 or cilomilast significantly prevented the TNF-alpha increase in pro-MMP-1. These results suggest that PDE4 inhibitors are effective in inhibiting the pro-MMP-2 and pro-MMP-1 secretion induced by TNF-alpha and might underline a potential therapeutic benefit of selective PDE4 inhibitors in lung diseases associated with abnormal tissue remodelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号