首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The regulation of the expression of indoleamine 2,3-dioxygenase (IDO) was studied in cloned murine macrophages (MT2) and microglial (N11) cells. Both cell lines express IDO and inducible nitric oxide synthase activity after interferon- (IFN-) stimulation. The regulation of IDO expression appears to differ in the two cell lines. Nitric oxide (NO) production negatively modulates the expression of IDO activity in IFN--primed macrophages, thereby indicating a cross-talk between the kynurenine and nitridergic pathways in these cells. Conversely, this down-regulation of IDO activity by NO does not occour in microglial cells. A differential regulation of IDO expression in the two cell lines was also observed with LPS and picolinic acid. Together with previous findings, these results indicate the existence of marked differences in the regulation of the expression of the kynurenine pathway enzymes between macrophages and microglial cells.Abbreviation used IFN- interferon- - IDO indoleamine 2,3-dioxygenase - NO nitric oxide - iNOS inducible nitric oxide synthase - NAME N-())-nitro-L-arginine methyl ester - SMTC S-methyl-L-thiocitrulline - BNI 3-bromo-7-nitroindazole - PIC picolinic acid - IL interleukin  相似文献   

2.
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme of the kynurenine pathway of tryptophan metabolism, ultimately leading to production of the excitotoxin quinolinic acid (QUIN) by monocytic cells. In the Tg2576 mouse model of Alzheimer's disease, systemic inflammation induced by lipopolysaccharide leads to an increase in IDO expression and QUIN production in microglia surrounding amyloid plaques. We examined whether the IDO over-expression in microglia could be mediated by brain proinflammatory cytokines induced during the peripheral inflammation using THP-1 cells and peripheral blood mononuclear cells (PBMC) as models for microglia. THP-1 cells pre-treated with 5–25 μM amyloid β peptide (Aβ) (1–42) but not with Aβ (1–40) or Aβ (25–35) became an activated state as indicated by their morphological changes and enhanced adhesiveness. IDO expression was only slightly increased in the reactive cells but strongly enhanced following treatment with proinflammatory cytokine interferon-γ (IFN-γ) but not with interleukin-1β, tumor necrosis factor-α, or interleukin-6 at 100 U/mL. The concomitant addition of Aβ (1–42) with IFN-γ was totally ineffective, indicating that Aβ pre-treatment is prerequisite for a high IDO expression. The priming effect of Aβ (1–42) for the IDO induction was also observed for PBMC. These findings suggest that IFN-γ induces IDO over-expression in the primed microglia surrounding amyloid plaques.  相似文献   

3.
Interferon-gamma-induced degradation of tryptophan by human cells in vitro   总被引:3,自引:0,他引:3  
Several human cells were investigated for their ability to degrade tryptophan and to synthesize neopterin upon induction by interferon-gamma (500 units/ml for 48 h). Concentrations of tryptophan, kynurenine, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, 7,8-dihydroneopterin and neopterin were assessed in the culture supernatants by HPLC. Fibroblasts, A-22 arachnoidea, HK-2351 scalp, T-2346 meningeom and HeLa cervical carcinoma cells but not HL-60 promyelocytic leukaemia cells were found to degrade tryptophan upon induction by interferon-gamma. Tryptophan is converted to kynurenine by fibroblasts, A-22 arachnoidea and HK-2351 scalp cells and to kynurenine and anthranilic acid by HeLa cervical carcinoma and T-2346 meningeom cells. Kynurenine and anthranilic acid always make up more than 82% of the tryptophan degraded. None of these cells synthesizes 3-hydroxyanthranilic acid, 3-hydroxykynurenine, 7,8-dihydroneopterin or neopterin. Human macrophages form 3-hydroxyanthranilic acid and neopterin, but not 3-hydroxykynurenine, beside kynurenine and anthranilic acid upon activation by interferon-gamma. These data indicate that several human cells can be induced by interferon-gamma to degrade tryptophan. The interferon-gamma induced synthesis of 3-hydroxyanthranilic acid and neopterin, however, appears to be restricted to human macrophages. A hypothesis explaining these findings is presented.  相似文献   

4.
Abstract: Delayed increases in the levels of an endogenous N-methyl-D-aspartate receptor agonist, quinolinic acid (QUIN), have been demonstrated following transient ischemia in the gerbil and were postulated to be secondary to induction of indoleamine-2,3-dioxygenase (IDO) and other enzymes of the L-tryptophan-kynurenine pathway. In the present study, proportional increases in IDO activity and QUIN concentrations were found 4 days after 10 min of cerebral ischemia, with both responses in hippocampus > striatum > cerebral cortex > thalamus. These increases paralleled the severity of local brain injury and inflammation. IDO activity and QUIN concentrations were unchanged in the cerebellum of postischemic gerbils, which is consistent with the preservation of blood flow and resultant absence of pathology in this region. Blood QUIN and L-kynurenine concentrations were not affected by ischemia. Brain tissue QUIN levels at 4 days postischemia exceeded blood concentrations, minimizing a role for breakdown of the blood–brain barrier. Marked increases in the activity of kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase were also detected in hippocampus but not in cerebellum on day 4 of recirculation. In vivo synthesis of [13C6]QUIN was demonstrated, using mass spectrometry, in hippocampus but not in cerebellum of 4-day postischemic animals 1 h after intracisternal administration of L-[13C6]tryptophan. However, accumulation of QUIN was demonstrated in both cerebellum and hippocampus of control gerbils following an intracisternal injection of 3-hydroxyanthranilic acid, which verifies the availability of precursor to both regions when administered intracisternally. Notably, although IDO activity and QUIN concentrations were unchanged in the cerebellum of ischemic gerbils, both IDO activity and QUIN content were increased in cerebellum to approximately the same degree as in hippocampus, striatum, cerebral cortex, and thalamus 24 h after immune stimulation by systemic pokeweed mitogen administration, demonstrating that the cerebellum can increase IDO activity and QUIN content in response to immune activation. No changes in kynurenic acid concentrations in either hippocampus, cerebellum, or cerebrospinal fluid were observed in the postischemic gerbils compared with controls, in accordance with the unaffected activity of kynurenine aminotransferase activity. Collectively, these results support roles for IDO, kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase in accelerating the conversion of L-tryptophan and other substrates to QUIN in damaged brain regions following transient cerebral ischemia. Immunocytochemical results demonstrated the presence of macrophage infiltrates in hippocampus and other brain regions that parallel the extent of these biochemical changes. We hypothesize that increased kynurenine pathway metabolism after ischemia reflects the presence of macrophages and other reactive cell populations at sites of brain injury.  相似文献   

5.
Immune activation is accompanied by induction of indoleamine (2,3)-dioxygenase (IDO), an enzyme which degrades tryptophan, a phenomenon which plays a role in the pathophysiology of major depression and post-natal depression and anxiety states. TRYCATs - tryptophan catabolites along the IDO pathway - such as kynurenine, kynurenic acid, xanthurenic acid, and quinolinic acid, have multiple effects, e.g. apoptotic, anti- versus pro-oxidant, neurotoxic versus neuroprotective, and anxiolytic versus anxiogenic effects. The aim of the present study was to study the immune effects of the above TRYCATS. Toward this end we examined the effects of the above TRYCATs on the LPS + PHA-induced production of interferon-gamma (IFNgamma), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNFalpha) in 18 normal volunteers. We found that the production of IFNgamma was significantly decreased by all 4 catabolites. Xanthurenic acid and quinolinic acid decreased the production of IL-10. Kynurenine, kynurenic acid, and xanthurenic acid, decreased the IFNgamma/IL-10 production ratio, whereas quinolinic acid increased this ratio. Kynurenic acid significantly reduced the stimulated production of TNFalpha. It is concluded that kynurenine, kynurenic acid, and xanthurenic acid have anti-inflammatory effects trough a reduction of IFNgamma, whereas quinolinic acid has pro-inflammatory effects in particular via significant decreases in IL-10. Following inflammation-induced IDO activation, some TRYCATs, i.e. kynurenine, kynurenic acid, and xanthurenic acid, exert a negative feedback control over IFNgamma production thus downregulating the initial inflammation, whereas an excess of quinolinic acid further aggravates the initial inflammation.  相似文献   

6.
Abstract: To study the regulation of the synthesis of quinolinic and kynurenic acids in vivo, we evaluated (a) the metabolism of administered kynurenine by measuring the content of its main metabolites 3-hydroxykynurenine, anthranilic acid, and 3-hydroxyanthranilic acid in blood and brain of mice; (b) the effects of ( m -nitrobenzoyl)alanine, a selective inhibitor of kynurenine hydroxylase and of ( o -methoxybenzoyl)alanine, a selective inhibitor of kynureninase, on this metabolism; and (c) the effects of ( o -methoxybenzoyl)alanine on liver kynureninase and 3-hydroxykynureninase activity. The conclusions drawn from these experiments are (a) the disposition of administered kynurenine preferentially occurs through hydroxylation in brain and through hydrolysis in peripheral tissues; (b) ( m -nitrobenzoyl)alanine, the inhibitor of kynurenine hydroxylase, causes the expected changes in brain kynurenine metabolism, such as a decrease of 3-hydroxykynurenine, and an increase of kynurenic acid; and (c) ( o -methoxybenzoyl)alanine, the kynureninase inhibitor, increases brain concentration of the cytotoxic compound 3-hydroxykynurenine, and unexpectedly does not reduce brain concentration of 3-hydroxyanthranilic acid, the direct precursor of quinolinic acid. Taken together, the experiments suggest that the systemic administration of a kynurenine hydroxylase inhibitor is a rational approach to increase the brain content of kynurenate and to decrease that of cytotoxic kynurenine metabolites, such as 3-hydroxykynurenine and quinolinic acid.  相似文献   

7.
8.
Objectives  Indoleamine-2,3-Dioxygenase (IDO) is an immunosuppressive molecule inducible in various cells. In addition to classic IDO (IDO1), a new variant, IDO2, has recently been described. When expressed in dendritic cells (DCs) or cancer cells, IDO was thought to suppress the immune response to tumors. A novel therapeutic approach in cancer envisages inhibition of IDO with 1-methyl-tryptophan (1MT). The levo-isoform (l-1MT) blocks IDO1, whereas dextro-1MT (d-1MT), which is used in clinical trials, inhibits IDO2. Here we analyze IDO2 expression in human cancer cells and the impact of both 1-MT isoforms on IDO activity. Methods  Surgically extirpated human primary tumors as well as human cancer cell lines were tested for IDO1 and IDO2 expression by RT-PCR. IDO1 activity of Hela cells was blocked by transfection with IDO1-specific siRNA and analysed for tryptophan degradation by RP-HPLC. The impact of d-1MT and l-1MT on IDO activity of Hela cells and protein isolates of human colon cancer were studied. Results  Human primary gastric, colon and renal cell carcinomas constitutively expressed both, IDO1 and IDO2 mRNA, whereas cancer cells lines had to be induced to by Interferon-gamma (IFN-γ). Treatment of Hela cells with IDO1-specific siRNA resulted in complete abrogation of tryptophan degradation. Only l-1MT, and not d-1MT, was able to block IDO activity in IFN-γ-treated Hela cells as well as in protein isolates of primary human colon cancer. Conclusions  Although IDO2 is expressed in human tumors, tryptophan degradation is entirely provided by IDO1. Importantly, d-1MT does not inhibit the IDO activity of malignant cells. If ongoing clinical studies show a therapeutic effect of d-1MT, this cannot be attributed to inhibition of IDO in tumor cells.  相似文献   

9.
Interferon-gamma (IFN-γ) is known to cause apoptosis of lens epithelial cells and cataract formation, but the molecular mechanisms underlying these effects are unknown. IFN-γ induces the expression of indoleamine 2,3-dioxygenase (IDO) and thereby enhances the production of kynurenines from l-tryptophan. The present study was designed to investigate the role of IDO and kynurenines in the IFN-γ-mediated apoptosis of lens epithelial cells and to determine the signaling pathways involved. IFN-γ stimulated the synthesis of IDO and activated the JAK–STAT1 signaling pathway in human lens epithelial cells (HLE-B3) in a dose-dependent manner. Meanwhile, fludarabine, an inhibitor of STAT1 activation, blocked IFN-γ-mediated IDO expression. N-Formylkynurenine, kynurenine (Kyn) and 3-hydroxykynurenine (3OHKyn) were detected in cells, with 3OHKyn concentrations being higher than those of the other kynurenines. The intracellular production of kynurenines was completely blocked by 1-methyl-dl-tryptophan (MT), an inhibitor of IDO. Kyn- and 3OHKyn-modified proteins were detected in IFN-γ-treated cells. The induction of IDO by IFN-γ in HLE-B3 cells caused increases in intracellular ROS, cytosolic cytochrome c and caspase-3 activity, along with a decrease in protein-free thiol content. These changes were accompanied by apoptosis. At equimolar concentrations, 3OHKyn caused higher levels of apoptosis than the other kynurenines in HLE-B3 cells. MT and a kynurenine 3-hydroxylase inhibitor (Ro61-8048) effectively inhibited IFN-γ-mediated apoptosis in HLE-B3 cells. Our results show that the induction of IDO by IFN-γ is JAK–STAT1 pathway-dependent and that this induction causes 3OHKyn-mediated apoptosis in HLE-B3 cells. These data suggest that IDO-mediated kynurenine formation could play a role in cataract formation related to chronic inflammation.  相似文献   

10.
The roles of tryptophan, kynurenne, 3-hydroxyanthranilic acid, and quinolinic acid as niacin precursors were investigated by assessing their germination and growth-promoting effects in orchid embryo and seedling cultures. Only niacin, 3-hydroxyanthranilic acid, quinolinic acid and kynurenine exhibited a growth-promoting effect on seedlings of all ages. Tryptophan inhibited the growth of 70-day-old seedlings but enhanced growth of older seedlings. The data presented are interpreted to be consistent with the hypothesis that orchids may synthesize their niacin by a pathway similar to that of certain bacteria, fungi, birds, and mammals.  相似文献   

11.
Kynurenine is biosynthesised from tryptophan catalysed by indoleamine 2,3-dioxygenase (IDO). The abrogation of kynurenine production is considered a promising therapeutic target for immunological cancer treatment. In the course of our IDO inhibitor programme, formal cyclisation of the isothiourea moiety of the IDO inhibitor 1 afforded the 5-Cl-benzimidazole derivative 2b-6, which inhibited both recombinant human IDO (rhIDO) activity and cellular kynurenine production. Further derivatisation of 2b-6 provided the potent inhibitor of cellular kynurenine production 2i (IC50?=?0.34?µM), which unexpectedly exerted little effect on the enzymatic activity of rhIDO. Elucidation of the mechanism of action revealed that compound 2i suppresses IDO expression at the protein level by inhibiting STAT1 expression in IFN-γ-treated A431 cells. The kynurenine-production inhibitor 2i is expected to be a promising starting point for a novel approach to immunological cancer treatment.  相似文献   

12.
Quinolinic acid is synthesized from 3-hydroxyanthranilic acid via 3-hydroxyanthranilic acid oxidase. In liver, 4-chloro-3-hydroxyanthranilic acid inhibits 3-hydroxyanthranilic acid oxidase. To determine whether 4-chloro-3-hydroxyanthranilic acid also inhibits 3-hydroxyanthranilic acid oxidase in brain, 3-hydroxyanthranilic acid was injected into the cisterna magna of rats either with or without 4-chloro-3 hydroxyanthranilic acid. 3-Hydroxyanthranilic acid increased quinolinic acid concentrations throughout the brain. 4-Chloro-3-hydroxyanthranilic acid attenuated increases in brain quinolinic acid. These observations indicate that 4-chloro-3-hydroxyanthranilic acid inhibits 3-hydroxyanthranilic acid oxidase in brain.Quinolinic acid is a well established systemic metabolite of l-tryptophan which has been shown to be present in brain (Wolfensberger et al., 1983; Heyes and Markey, 1988a). QUIN has proved to be a convulsant (Lapin, 1982), neurotoxin (Schwarcz et al., 1983) and agonist of N-methyl-D-aspartate receptors (Perkins and Stone, 1983) when injected directly into the central nervous system of experimental animals. Therefore increased concentrations of QUIN in brain may have neoropathologic consequences. l-Tryptophan is converted to QUIN via the kynurenine pathway. The precursor of QUIN, 2-amino-3-carboxymuconic semialdehyde is synthesized from 3-hydroxyanthranilic acid (3-HAA) by the action of 3-hydroxyanthranilic acid oxidase (3-HAA/OX) in liver and brain (Foster et al., 1986; Okuno et al., 1987). QUIN is then formed from 2-amino-3-carboxymuconic semialdehyde by a spontaneous, non-enzymatic reaction. In liver, 3-HAA/OX is inhibited by 4-chloro-3-hydroxyantranilic acid (CL-HAA; Parli et al., 1980). In the present study, rats were given an intracisternal injection of 3-HAA and the resultant increases in regional brain QUIN concentrations quantified by gas chromatography/mass spectrometry (Heyes and Markey, 1988a,b). To determine whether CL-HAA inhibit 3-hydroxyanthranilic acid oxidase in brain, CL-HAA was co-administered with 3-HAA to see whether increases in QUIN were attenuated.  相似文献   

13.
The kynurenine pathway of tryptophan catabolism plays an important role in several biological systems affected by aging. We quantified tryptophan and its metabolites kynurenine (KYN), kynurenine acid (KYNA), picolinic acid (PIC) and quinolinic acid (QUIN), and activity of the kynurenine pathway enzymes indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase (TDO) and quinolinic acid phosphoribosyltransferase (QPRTase), in the brain, liver and kidney of young, middle-aged and old female Wistar rats. Tryptophan levels and TDO activity decreased in all tissues with age. In contrast, brain IDO activity increased with age, while liver and kidney IDO activity decreased with age. The levels of KYN, KYNA, QUIN and PIC in brain all increased with age, while the levels of KYN in the liver and kidney showed a tendency to decrease. The levels of KYNA in the liver did not change, but the levels of KYNA in the kidney increased. The levels of PIC and QUIN increased significantly in the liver but showed a tendency to decrease in the kidney. QPRTase activity in both brain and liver decreased with age but was elevated in the kidney in middle-aged (12-month-old) rats. These age-associated changes in tryptophan metabolism have the potential to impact upon major biological processes, including lymphocyte function, pyridine (NAD(P)(H)) synthesis and N-methyl-d-aspartate (NMDA)-mediated synaptic transmission, and may therefore contribute to several degenerative changes of the elderly.  相似文献   

14.
The use of o-methoxybenzoylalanine, a selective kynureninase inhibitor, has been proposed with the aim of reducing brain synthesis of quinolinic acid, an excitotoxic tryptophan metabolite. In liver homogenates, however, this compound caused unexpected accumulation of 3-hydroxyanthranilic acid, the product of kynureninase activity and the precursor of quinolinic acid. To explain this observation, we investigated the interaction(s) of o-methoxybenzoylalanine with 3-hydroxyanthranilic acid dioxygenase, the enzyme responsible for quinolinic acid formation. When the purified enzyme or partially purified cytosol preparations were used, o-methoxybenzoylalanine did not affect 3-hydroxyanthranilic acid dioxygenase activity. However, a significant reduction of this enzymatic activity did occur when o-methoxybenzoylalanine was tested in the presence of mitochondria. It is interesting that addition of purified mitochondria to 3-hydroxyanthranilic acid dioxygenase preparations reduced the enzymatic activity and the synthesis of quinolinic acid. In vivo, administration of o-methoxybenzoylalanine significantly reduced quinolinic acid synthesis and content in both blood and brain of mice. Our results suggest that mitochondrial protein(s) interact(s) with soluble 3-hydroxyanthranilic acid dioxygenase and cause(s) modifications in the enzyme resulting in a decrease in its activity. These modifications also allow the enzyme to interact with o-methoxybenzoylalanine, thus leading to a further reduction in quinolinic acid synthesis.  相似文献   

15.
16.
Interferon-gamma-induced tryptophan metabolism of human macrophages was compared to ten human neoplastic cell lines of various tissue origin and to normal dermal human fibroblasts. Tryptophan and metabolites were determined in supernatants of cultures, after incubation for 48 h, by high-performance liquid chromatography with ultraviolet and fluorescence detection. With the exception of two cell lines (Hep G 2, hepatoma and CaCo 2, colon adenocarcinoma) in all of the ten other cells and cell lines tryptophan degradation was induced by interferon-gamma. Five of these ten formed only kynurenine (SK-N-SH, neuroblastoma; T 24, J 82, bladder carcinoma; A 431, epidermoid carcinoma; normal dermal fibroblasts), three formed kynurenine and anthranilic acid (U 138 MG, glioblastoma; SK-HEP-1, hepatoma; A 549, lung carcinoma). Only one line, A 498 (kidney carcinoma) showed the same pattern of metabolites as macrophages (kynurenine, anthranilic acid and 3-hydroxyanthranilic acid). Interferon-gamma regulated only the activity of indoleamine 2,3-dioxygenase. All other enzyme activities detected were independent of interferon-gamma, as shown by the capacity of the cells to metabolize L-kynurenine or N-formyl-L-kynurenine. Increasing the extracellular L-tryptophan concentration resulted in a marked induction of tryptophan degradation by macrophages. Contrarily, a significant decrease of the tryptophan degrading activity was observed when the extracellular L-tryptophan concentration was increased 2-fold with SK-N-SH, T 24 and J 82, 4-fold with A 431 and A 549 and 10-fold with U 138 MG and SK-HEP-1. The activity was unaffected by extracellular L-tryptophan with dermal fibroblasts and A 498. Though interferon-gamma was the most potent inducer of tryptophan metabolism, interferon-alpha and/or -beta showed small but distinct action on some of the cells. In all cells which reacted to interferon-gamma by enhanced expression of class I and/or class II major histocompatibility complex antigens tryptophan degradation was also inducible. These results demonstrate that induction of indoleamine 2,3-dioxygenase is a common feature of interferon-gamma action, that the extent of this induction is influenced by extracellular L-tryptophan concentrations and that indoleamine 2,3-dioxygenase is the only enzyme in the formation of 3-hydroxyanthranilic acid from tryptophan which is regulated by interferon-gamma.  相似文献   

17.
The following enzyme activities of the tryptophan-nicotinic acid pathway were studied in male New Zealand rabbits: liver tryptophan 2,3-dioxygenase, intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4-dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase. Intestine superoxide dismutase and serum tryptophan were also determined. Liver tryptophan 2,3-dioxygenase exists only as holoenzyme, but intestine indole 2,3-dioxygenase is very active and can be considered the key enzyme which determines how much tryptophan enters the kynurenine pathway also under physiological conditions. The elevated activity of indole 2,3-dioxygenase in the rabbit intestine could be related to the low activity of superoxide dismutase found in intestine. Kynurenine 3-monooxygenase appeared more active than kynurenine-oxoglutarate transaminase and kynureninase, suggesting that perhaps a major portion of kynurenine available from tryptophan may be metabolized to give 3-hydroxyanthranilic acid, the precursor of nicotinic acid. In fact, 3-hydroxyanthranilate 3,4-dioxygenase is much more active than the other previous enzymes of the kynurenine pathway. In the rabbit liver 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase show similar activities, but in the kidney 3-hydroxyanthranilate 3,4-dioxygenase activity is almost double. These data suggest that in rabbit tryptophan is mainly metabolized along the kynurenine pathway. Therefore, the rabbit can also be a suitable model for studying tryptophan metabolism in pathological conditions.  相似文献   

18.
Pneumonia caused by bacterial, viral and parasitic pathogens is one of the most common clinical problems facing primary and secondary care physicians. Staphylococcus aureus is a common cause of lung abscesses in humans and, in immunocompromised patients, herpes simplex virus type I and Toxoplasma gondii can cause severe life-threatening pneumonia. The authors focused their interest in the antimicrobial effects mediated by human lung cells against these pathogens. It was found that IFN-γ-stimulated lung cells are capable of inhibiting T cell proliferation and restrict the replication of microorganisms such as T. gondii , S. aureus and herpes simplex virus. This immunoregulatory and antimicrobial effect was enhanced in the presence of IL-1 or tumor necrosis factor-α (TNF-α). Furthermore, the IFN-γ-dependent antimicrobial effects of HBE4-E6/E7 (human lung bronchus epithelial cells) and A549 (human type II alveolar cells) correlated with the activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO). It was found that both the abrogation of IDO activity by the specific IDO-inhibitor 1- l -methyltryptophan and the supplementation of cultures with tryptophan result in an inhibition of IFN-γ-induced antimicrobial effects mediated by lung cells. Therefore it is suggested that tryptophan depletion via IFN-γ-mediated IDO induction is a major antibacterial, antiparasitic, antiviral and immunoregulatory mechanism in human lung cells.  相似文献   

19.
The kynurenine pathway catabolite 3-hydroxykynurenine (3HK) and redox-active metals such as copper and iron are implicated in cataractogenesis. Here we investigate the reaction of kynurenine pathway catabolites with copper and iron, as well as interactions with the major lenticular structural proteins, the alpha-crystallins. The o-aminophenol kynurenine catabolites 3HK and 3-hydroxyanthranilic acid (3HAA) reduced Cu(II)>Fe(III) to Cu(I) and Fe(II), respectively, whereas quinolinic acid and the nonphenolic kynurenine catabolites kynurenine and anthranilic acid did not reduce either metal. Both 3HK and 3HAA generated superoxide and hydrogen peroxide in a copper-dependent manner. In addition, 3HK and 3HAA fostered copper-dependent alpha-crystallin cross-linking. 3HK- or 3HAA-modifed alpha-crystallin showed enhanced redox activity in comparison to unmodified alpha-crystallin or ascorbate-modified alpha-crystallin. These data support the possibility that 3HK and 3HAA may be cofactors in the oxidative damage of proteins, such as alpha-crystallin, through interactions with redox-active metals and especially copper. These findings may have relevance for understanding cataractogenesis and other degenerative conditions in which the kynurenine pathway is activated.  相似文献   

20.
Ferulic acid (FA) is a phenol compound found in plants that has anti-inflammatory properties. Indoleamine 2, 3-dioxygenase (IDO) is a tryptophan catabolic enzyme induced in immune cells, including glial cells, during inflammation. Enhanced IDO expression leads to reduced tryptophan levels and increased levels of toxic metabolites, including quinolinic acid. Therefore, inhibition of IDO expression may be effective in suppressing progression of neurodegenerative diseases. In this study, we examined the effect of FA in microglial cells on IDO expression levels and related inflammatory signal molecules. FA suppressed LPS-induced IDO mRNA expression and also suppressed nuclear translocation of NF-κB and phosphorylation of p38 MAPK. However, FA did not affect the production of LPS-induced inflammatory mediators and phosphorylation of JNK. Our results indicate that FA suppresses LPS-induced IDO mRNA expression, which may be mediated by inhibition of the NF-κB and p38 MAPK pathways in microglial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号