首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5%), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005% yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production. A type culture has been deposited with the American Type Culture Collection, Rockville, Md. (ATCC 35960).  相似文献   

2.
A novel type of purple sulfur bacterium was isolated from a hypersaline sulfur spring on the shore of the Dead Sea. The cells of the isolate are irregularly rod-shaped or curved, and motile by means of a tuft of polar flagella. The photosynthetic system, containing bacteriochlorophyll a and carotenoids of the spirilloxanthin series, is located on stacks of lamellar membranes in the cell cytoplasm. The organism can grow either photoautotrophically with sulfide as electron donor, which is oxidized via extracellular sulfur to sulfate, or photoheterotrophically, using acetate, succinate, fumarate, malate or pyruvate as carbon sources. The bacterium is obligately anaerobic, and requires a source of reduced sulfur for growth. The isolate is moderately halophilic, and grows optimally at NaCl concentrations between 3 and 8%, temperatures between 30 and 45°C, and neutral pH. 16S ribosomal RNA oligonucleotide cataloging suggests a close relationship to purple sulfur bacteria of the genus Ectothiorhodospira. As the isolate differs greatly from the described members of the genus Ectothiorhodospira, we describe the isolate as a new species, and propose the name Ectothiorhodospira marismortui sp. nov.  相似文献   

3.
The name "Bacillus thiaminolyticus" Kuno 1951 was not included on the Approved Lists of Bacterial Names and has lost standing in bacteriological nomenclature. The genetic homogeneity of "Bacillus thiaminolyticus" was assessed by determining guanine-plus-cytosine contents by the buoyant density method and by measuring DNA relatedness by using spectrophotometric reassociation procedures. Of the 26 strains which I studied, 24 had guanine-plus-cytosine contents in the range from 52 to 54 mol%. The consistently high DNA relatedness values of 60 to 100% of these 24 strains to the type strain indicated that the "B. thiaminolyticus" group is genetically homogeneous. Low DNA relatedness values of 20 to 31% showed that "B. thiaminolyticus" is genetically unrelated to Bacillus alvei, "Bacillus aneurinolyticus," "Bacillus apiarius," Bacillus larvae, Bacillus laterosporus, Bacillus macerans, and Bacillus stearothermophilus. In general, the "B. thiaminolyticus" group was highly homogeneous for 49 phenotypic characteristics and clearly distinguishable from B. alvei, with which it was allegedly synonymous. On the basis of these findings, revival of the name Bacillus thiaminolyticus is proposed.  相似文献   

4.
Two new species of aerobic, gram-negative, peritrichously flagellated or nonmotile marine bacteria usually forming star-shaped aggregates were isolated from northeastern Atlantic Ocean bottom sediments. These organisms resembled eight star-shaped-aggregate-forming bacterial species from the Baltic Sea originally ascribed to the genus Agrobacterium but not included on the Approved Lists of Bacterial Names because of their questionable relationships to true agrobacteria. These two sets of star-shaped-aggregate-forming bacteria were compared by means of phenotypic data, DNA base compositions, DNA-DNA relatedness, and one-dimensional electrophoretic analysis of low-molecular-weight RNAs (5S rRNA and tRNA). According to the results of genotyping, the northeastern Atlantic Ocean isolates and three of the Baltic Sea species formed a group of closely related bacteria that could not be excluded from the genus Agrobacterium with certainty. Until more genotypic data are available, these five marine species are regarded as a distinct subdivision of the genus Agrobacterium consisting of Agrobacterium atlanticum sp. nov. (type strain, 1480T = DSM 5823T), A. meteori sp. nov. (type strain, 1513T = DSM 5824T), A. ferrugineum sp. nov. nom. rev. emend. (type strain, ATCC 25652T), A. gelatinovorum sp. nov. nom. rev. emend. (type strain, ATCC 25655T), and A. stellulatum sp. nov. nom. rev. emend. (type strain, ATCC 15215T). "A. aggregatum" proved to be a later subjective synonym of A. stellulatum, which had priority. The remaining four Baltic Sea species, "A. agile," "A. kieliense," "A. luteum," and "A. sanguineum," could not be placed in the new subdivision of Agrobacterium.  相似文献   

5.
6.
7.
8.
A 20S proteasome, comprising two subunits alpha and beta, was purified from the extreme halophilic archaeon Haloarcula marismortui, which grows only in saturated salt conditions. The three-dimensional reconstruction of the H. marismortui proteasome (Hm proteasome), obtained from negatively stained electron micrographs, is virtually identical to the structure of a thermophilic proteasome filtered to the same resolution. The stability of the Hm proteasome was found to be less salt-dependent than that of other halophilic enzymes previously described. The proteolytic activity of the Hm proteasome was investigated using the malate dehydrogenase from H. marismortui (HmMalDH) as a model substrate. The HmMalDH denatures when the salt concentration is decreased below 2 M. Under these conditions, the proteasome efficiently cleaves HmMalDH during its denaturation process, but the fully denatured HmMalDH is poorly degraded. These in vitro experiments show that, at low salt concentrations, the 20S proteasome from halophilic archaea eliminates a misfolded protein.  相似文献   

9.
10.
The previously described extremely halophilic bacterium, strain M6, metabolizes a variety of carbohydrates with the production of acid. In addition, the organism produces nitrite (but no gas) from nitrate, is motile, and grows most rapidly at about 50 degrees C. These characteristics distinguish it from all previously described halophilic bacteria in the genus Halobacterium. It is suggested that it be designated as a new species, Halobacterium saccharovorum.  相似文献   

11.
A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125-330?g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50-330?g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.  相似文献   

12.
13.
14.
15.
We isolated an obligately anaerobic halophilic bacterium from the Dead Sea that grew by respiration of selenate. The isolate, designated strain DSSe-1, was a gram-negative, non-motile rod. It oxidized glycerol or glucose to acetate + CO2 with concomitant reduction of selenate to selenite plus elemental selenium. Other electron acceptors that supported anaerobic growth on glycerol were nitrate and trimethylamine-N-oxide; nitrite, arsenate, fumarate, dimethylsulfoxide, thiosulfate, elemental sulfur, sulfite or sulfate could not serve as electron acceptors. Growth on glycerol in the presence of nitrate occurred over a salinity range from 100 to 240 g/l, with an optimum at 210 g/l. Analysis of the 16S rRNA gene sequence suggests that strain DSSe-1 belongs to the order Halanaerobiales, an order of halophilic anaerobes with a fermentative or homoacetogenic metabolism, in which anaerobic respiratory metabolism has never been documented. The highest 16S rRNA sequence similarity (90%) was found with Acetohalobium arabaticum (X89077). On the basis of physiological properties as well as the relatively low homology of 16S rRNA from strain DSSe-1 with known genera, classification in a new genus within the order Halanaerobiales, family Halobacteroidaceae is warranted. We propose the name Selenihalanaerobacter shriftii. Type strain is strain DSSe-1 (ATCC accession number BAA-73).  相似文献   

16.
17.
A new purple sulfur bacterium was isolated in pure culture (strain 8315) from a laminated microbial mat at Great Sippewissett Salt Marsh, Cape Cod, Mass., USA. Single cells were large rods, 10–20 times longer than wide, and predominantly strainght with slightly conical ends. Cells were motile by polarly inserted flagellar tufts. Intracellular photosynthetic membranes were of the vesicular-type. Photosynthetic pigments were bacteriochlorophylla and the carotenoids lycopene, rhodovibrin, anhydrorhodovibrin, and rhodopin. The new bacterium was strictly anaerobic and obligately phototrophic. Hydrogen, hydrogen sulfide, elemental sulfur, and thiosulfate were used as electron donors for photoautotrophic growth. In sulfide-reduced, bicarbonate-containing media, acetate, propionate, and pyruvate were photoassimilated. Growth factors were not required. Optimum growth rates were obtained at pH 7.3, 30°C, a salinity of 1.5–5.0% NaCl, and a light intensity of about 500 lx (tungsten lamp). The DNA base composition of strain 8315 was 60.4 mol% G+C. Comparison of 16S rDNA oligonucleotide catalogue data showed that the new bacterium must be considered a new genus of the Chromatiaceae. The nameRhabdochromatium is revived, and the new speciesRhabdochromatium marinum sp. nov. is described.  相似文献   

18.
Two extremely halophilic archaea strains, CBA1112T and CBA1113, were isolated from solar salt in Korea. The genome sizes and G + C content of CBA1112T and CBA1113 were 3.77 and 3.53 Mb, and 66.0 and 66.5 mol%, respectively. Phylogenetic analysis based on closely related taxa and environmental Haloplanus sequences indicated that both CBA1112T and CBA1113 strains are grouped within the genus Haloplanus. OrthoANI and in silico DNA–DNA hybridization values were below the species delineation threshold. Pan-genomic analysis showed that the two novel strains and four reference strains had 6203 pan-orthologous groups in total. Six Haloplanus strains shared 1728 core pan-genome orthologous groups, which were mainly associated with amino acid transport and metabolism and translation, ribosomal structure and biogenesis categories, and amino acid metabolism and carbohydrate metabolism related categories. The novel strain-specific pan-genome orthologous groups were mainly involved with replication, recombination and repair category and replication and repair pathway or amino acid metabolism pathway. Cells of both strains were Gram-negative and pleomorphic, and colonies were red-pigmented. The major polar lipids of both strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and one glycolipid, sulfated mannosyl glucosyl diether. Based on genomic, phylogenetic, phenotypic, and chemotaxonomic features, strains CBA1112T and CBA1113 are described as novel species of the genus Haloplanus. Thus, we propose the name Haloplanus rubicundus sp. nov. The type strain is CBA1112T (=KCCM 43224T = JCM 30475T).  相似文献   

19.
A new bacteriochlorophyll b containing phototrophic bacterium was isolated from extremely saline and alkaline soda lakes in Egypt. Enrichment and isolation were performed using a synthetic medium with high contents of sodium carbonate, sodium sulfate and sodium chloride. Photoautotrophic growth occurred with hydrogen sulfide as photosynthetic electron donor. During oxidation of sulfide to sulfate extracellular elemental sulfur globules appeared in the medium. Cells were also capable to grow under photoheterotrophic conditions with acetate, propionate, pyruvate, succinate, fumarate or malate as carbon sources and electron donors. Under these conditions sulfate was assimilated. Optimal growth under the applied experimental conditions occurred at a total salinity of 14–27%, a pH-range between 8.1 and 9.1 and a temperature between 47°C and 50°C. The cells were 0.5–0.6 m wide and, depending on cultural conditions, 2.5–8.0 m long; they were spiral shaped, multiplied by binary fission and were motile by means of bipolar flagella. Intercytoplasmic photosynthetic membranes were present as stacks. Bacteriochlorophyll b was the main photosynthetic pigment; small amounts of carotenoids were mainly present as glucosides of rhodopin and its methoxy derivative. The new organism is described as Ectothiorhodospira halochloris.Dedicated to Professor C. B. van Niel on the occasion of his 80th birthday  相似文献   

20.
Evidence from numerical taxonomic analysis and DNA-DNA hybridization supports the proposal of new species in the genera Actinobacillus and Pasteurella. The following new species are proposed: Actinobacillus rossii sp. nov., from the vaginas of postparturient sows; Actinobacillus seminis sp. nov., nom. rev., associated with epididymitis of sheep; Pasteurella bettii sp. nov., associated with human Bartholin gland abscess and finger infections; Pasteurella lymphangitidis sp. nov. (the BLG group), which causes bovine lymphangitis; Pasteurella mairi sp. nov., which causes abortion in sows; and Pasteurella trehalosi sp. nov., formerly biovar T of Pasteurella haemolytica, which causes septicemia in older lambs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号