首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gangliosides have been shown to function as cell surface receptors, as well as participating in cell growth, differentiation, and transformation. In spite of their multiple biological functions, relatively little is known about their structure and physical properties in membrane systems. The thermotropic and structural properties of ganglioside GM1 alone and in a binary system with 1,2-dipalmitoyl phosphatidylcholine (DPPC) have been investigated by differential scanning calorimetry (DSC) and x-ray diffraction. By DSC hydrated GM1 undergoes a broad endothermic transition TM = 26 degrees C (delta H = 1.7 kcal/mol GM1). X-ray diffraction below (-2 degrees C) and above (51 degrees C) this transition indicates a micellar structure with changes occurring only in the wide angle region of the diffraction pattern (relatively sharp reflection at 1/4.12 A-1 at -2 degrees C; more diffuse reflection at 1/4.41 A-1 at 51 degrees C). In hydrated binary mixtures with DPPC, incorporation of GM1 (0-30 mol%; zone 1) decreases the enthalpy of the DPPC pretransition at low molar compositions while increasing the TM of both the pre- and main transitions (limiting values, 39 and 44 degrees C, respectively). X-ray diffraction studies indicate the presence of a single bilayer gel phase in zone 1 that can undergo chain melting to an L alpha bilayer phase. A detailed hydration study of GM1 (5.7 mol %)/DPPC indicated a conversion of the DPPC bilayer gel phase to an infinite swelling system in zone 1 due to the presence of the negatively charged sialic acid moiety of GM1. At 30-61 mol % GM1 (zone 2), two calorimetric transitions are observed at 44 and 47 degrees C, suggesting the presence of two phases. The lower transition reflects the bilayer gel --> L alpha transition (zone 1), whereas the upper transition appears to be a consequence of the formation of a nonbilayer, micellar or hexagonal phase, although the structure of this phase has not been defined by x-ray diffraction. At > 61 mol % GM1 (zone 3) the calorimetric and phase behavior is dominated by the micelle-forming properties of GM1; the presence of mixed GM1/DPPC micellar phases is predicted.  相似文献   

2.
B Goins  E Freire 《Biochemistry》1985,24(7):1791-1797
The interactions of cholera toxin and their isolated binding and active subunits with phospholipid bilayers containing the toxin receptor ganglioside GM1 have been studied by using high-sensitivity differential scanning calorimetry and steady-state and time-resolved fluorescence and phosphorescence spectroscopy. The results of this investigation indicate that cholera toxin associates with phospholipid bilayers containing ganglioside GM1, independent of the physical state of the membrane. In the absence of Ca2+, calorimetric scans of intact cholera toxin bound to dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles containing ganglioside GM1 result in a broadening of the lipid phase transition peak and a slight decrease (less than 5%) in the transition enthalpy. In the presence of Ca2+ concentrations sufficient to cause ganglioside phase separation, the association of the intact toxin to the membrane results in a significant decrease of enthalpy change for the lipid transition, indicating that under these conditions the toxin molecule perturbs the hydrophobic core of the bilayer. Calorimetric scans using isolated binding subunits lacking the hydrophobic toxic subunit did not exhibit a decrease in the phospholipid transition enthalpy even in the presence of Ca2+, indicating that the binding subunits per se do not perturb the hydrophobic core of the bilayer. On the other hand, the hydrophobic A1 subunit by itself was able to reduce the phospholipid transition enthalpy when reconstituted into DPPC vesicles. These calorimetric observations were confirmed by fluorescence experiments using pyrene phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Solubilization of large unilamellar 1,2-dioleoylphosphatidylcholine (DOPC) vesicles by N-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was studied using turbidimetry. From turbidity data, the LDAO partition coefficient between the aqueous phase and DOPC bilayers was obtained. Using this partition coefficient, the LDAO:DOPC molar ratio in the bilayer was calculated and effects of LDAO on the bilayer stability, bilayer thickness and on the phosphohydrolase activity of sarcoplasmic reticulum Ca(2+) transporting ATPase (SERCA) reconstituted into DOPC were compared at the same LDAO:DOPC molar ratios in the bilayer. The sequence "bilayers in vesicles - bilayer fragments (flat mixed micelles) - tubular mixed micelles - globular mixed micelles" was suggested for the solubilization mechanism of DOPC vesicles from the combined turbidimetric and small-angle neutron scattering (SANS) results. The effective molecular packing parameter delta = 0.5, corresponding to the mixed bilayer - mixed tubular micelle transition, was calculated from fragmental DOPC and LDAO volumes at the molar ratio LDAO:DOPC = 2.00 in bilayers, in the middle of transition region observed earlier experimentally by small-angle neutron scattering (SANS). The bilayer thickness decrease induced by LDAO in DOPC observed by SANS did not result in the SERCA phosphohydrolase activity decrease and this indicates that some other factors compensated this bilayer effect of LDAO. The ATPase activity decrease at higher LDAO concentrations was caused by the bilayer deformation. This deformation resulted in the formation of non-bilayer aggregates in LDAO+DOPC system.  相似文献   

4.
M Masserini  E Freire 《Biochemistry》1986,25(5):1043-1049
The thermotropic behavior of dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine large unilamellar vesicles containing ganglioside GM1 of homogeneous long chain base composition has been studied by high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. At neutral pH and in the absence of Ca2+, the thermotropic behavior of these systems is independent of the ganglioside chain length composition. The presence of Ca2+ at concentrations higher than 5 mM induces ganglioside phase separation in a manner dependent upon the length difference between the ganglioside long chain base and the phosphatidylcholine acyl chains. The analysis of the chain length dependence of the thermotropic behavior suggests that the driving force for ganglioside phase separation is not a Ca2+-induced cross-bridging of the ganglioside head group but a passive ganglioside exclusion from Ca2+-perturbed phosphatidylcholine-rich regions within the bilayer. Experiments with native ganglioside GM1, primarily a mixture of C18:1 and C20:1 long chain bases, indicate that the individual components of the mixture maintain their characteristic behavior within the lipid bilayer matrix. These results, together with the presence of a phase transition in native GM1 micellar dispersions, absent in purified C18:1 or C20:1 ganglioside micelles, strengthen the idea of a possible role of chain length composition in the modulation of ganglioside function.  相似文献   

5.
T Utsumi  Y Aizono  G Funatsu 《FEBS letters》1987,216(1):99-103
The interaction of ricin with ganglioside GM1 or glycoprotein containing liposomes was investigated. At neutral pH, ricin bound to galactose moieties on the surface of the liposomes to form ricin-liposomes complexes, but did not associate with their lipid bilayers. When these ricin-liposomes complexes were exposed to a pH below 5, ricin bound to GM1-liposomes became associated with the lipid bilayer, whereas ricin bound to glycoprotein-liposomes (containing human erythrocyte Band 3) was only rarely associated. Association of ricin with the lipid bilayer of GM1-liposomes did not occur in the presence of lactose, which inhibits the binding of ricin to ganglioside GM1. Using a hydrophobic probe, 8-amino-1-naphthalene sulfonic acid (ANS), it was revealed that an acidity below pH 5 resulted in exposure of hydrophobic regions on the ricin molecule. These results strongly suggest that association of ricin with the lipid bilayer of GM1-liposomes at acidic pH is mediated by the binding of ricin to ganglioside GM1 at neutral pH and occurs through interaction between the exposed hydrophobic region on the ricin molecule and the lipid bilayer of GM1-liposomes at low pH.  相似文献   

6.
In this study, we have examined how the headgroup size and properties affect the membrane properties of sphingomyelin and interactions with cholesterol. We prepared N-palmitoyl ceramide phosphoethanolamine (PCPE) and compared its membrane behavior with D-erythro-N-palmitoyl-sphingomyelin (PSM), both in monolayers and bilayers. The pure PCPE monolayer did not show a phase transition at 22 degrees C (in contrast to PSM), but displayed a much higher inverse isothermal compressibility as compared to the PSM monolayer, indicating stronger intermolecular interactions between PCPEs than between PSMs. At 37 degrees C the PCPE monolayer was more expanded (than at 22 degrees C) and displayed a rather poorly defined phase transition. When cholesterol was comixed into the monolayer, a condensing effect of cholesterol on the lateral packing of the lipids in the monolayer could be observed. The phase transition from an ordered to a disordered state in bilayer membranes was determined by diphenylhexatriene steady-state anisotropy. Whereas the PSM bilayer became disordered at 41 degrees C, the PCPE bilayer main transition occurred around 64 degrees C. The diphenylhexatriene steady-state anisotropy values were similar in both PCPE and PSM bilayers before and after the phase transition, suggesting that the order in the hydrophobic core in both bilayer types was rather similar. The emission from Laurdan was blue shifted in PCPE bilayers in the gel phase when compared to the emission spectra from PSM bilayers, and the blue-shifted component in PCPE bilayers was retained also after the phase transition, suggesting that Laurdan molecules sensed a more hydrophobic environment at the PCPE interface compared to the PSM interface both below and above the bilayer melting temperature. Whereas PSM was able to form sterol-enriched domains in dominantly fluid bilayers (as determined from cholestatrienol dequenching experiments), PCPE failed to form such domains, suggesting that the size and/or properties of the headgroup was important for stabilizing sphingolipid/sterol interaction. In conclusion, our study has highlighted how the headgroup in sphingomyelin affect its membrane properties and interactions with cholesterol.  相似文献   

7.
Perturbations induced by ethylazinphos on the physical organization of dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol membranes were studied by differential scanning calorimetry (DSC) and fluorescence polarization of 2-, 6-, 12-(9-anthroyloxy) stearic acids and 16-(9-anthroyloxy) palmitic acid. Ethylazinphos (50 and 100 microM) increases the fluorescence polarization of the probes, either in the gel or in the fluid phase of DPPC bilayers, and this concentration dependent effect decreases from the surface to the bilayer core. Additionally, the insecticide displaces the phase transition to a lower temperature range and broadens the transition profile of DPPC. A shifting and broadening of the phase transition is also observed by DSC. Furthermore at insecticide/lipid molar ratios higher than 1/7, DSC thermograms, in addition to the normal transition centered at 41 degrees C, also display a new phase transition centered at 45.5 degrees C. The enthalpy of this new transition increases with insecticide concentration, with a corresponding decrease of the main transition enthalpy. Ethylazinphos in DPPC bilayers with low cholesterol (< or = 20 mol%) perturbs the membrane organization as described above for pure DPPC. However, cholesterol concentrations higher than 20 mol% prevent insecticide interaction, as revealed by fluorescence polarization and DSC data. Apparently, cholesterol significantly modulates insecticide interaction by competition for similar distribution domains in the membrane. The present results strongly support our previous hypothesis that ethylazinphos locates in the cooperativity region, i.e. the region of C1-C9 atoms of the acyl chains, and extends to the lipid-water interface, where it increases lipid packing order sensed across all the thickness of the bilayer. Additionally, and, on the basis of DSC data, a lateral regionalization of ethylazinphos is here tentatively suggested.  相似文献   

8.
Organization of ganglioside GM1 in phosphatidylcholine bilayers   总被引:3,自引:0,他引:3  
Molecules of the ganglioside GM1 are randomly distributed in liquid-crystalline 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers. This conclusion is based on a freeze-etch electron microscopic study using ferritin-conjugated cholera toxin and cholera toxin alone as ganglioside labels. The average number of GM1 molecules under a label is calculated by a novel method from the dependence of the fraction of bilayer area covered by the label on the mole fraction of GM1 in the bilayer.  相似文献   

9.
Differential scanning calorimetry (DSC) and film balance measurements were performed to study the interactions of the GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glc1 -->1'Cer (GM2)-activator protein with phospholipid/ganglioside vesicles and monolayers. The nonglycosylated form of the GM2-activator protein, added to unilamellar lipid vesicles of different composition, causes differential effects on the gel to liquid-crystalline phase transition peaks. The phase transition temperature (Tm) of pure dimyristoylglycerophosphocholine (DMPC) bilayer is slightly decreased. When lipids which specifically bind the GM2-activator protein are incorporated into the vesicles (e.g. a sulfatide or gangliosides) a shoulder in the thermograms at higher temperatures is observed, indicating an increase of the stability of the gel phase in relation to the liquid-crystalline phase. We also studied the surface activity of a glycosylated and a nonglycosylated GM2-activator protein at the air-water interface. The glycosylated form showed a slightly lower surface activity than the GM2-activator protein without oligosaccharide moiety. When the GM2-activator protein is added to the sub-phase of a surface covered with a lipid monolayer, it can only insert into the monolayer and reach the air-water interface below a monolayer pressure of 25 mN.m-1, depending on the lipid composition, and not when the monolayers are at the bilayer equivalence pressure of 30-35 mN.m-1. Particularly for Galbeta1-->3GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta 1-->4Glc1-->1'Cer (GM1) and GM2 containing films, the critical pressures (picrit) when no additional increase in surface pressure is observed after addition of the protein into the subphase, are much lower. This leads to the conclusion that binding of the GM2 activator protein to the ganglioside headgroups prevents the protein from reaching the air-water interface. The protein is then located preferentially at the lipid-water interface and cannot penetrate into the chain region.  相似文献   

10.
R E Brown  K J Hyland 《Biochemistry》1992,31(43):10602-10609
The spontaneous incorporation of II3-N-acetylneuraminosylgangliotetraosylceramide (GM1) from its micelles into phospholipid bilayer vesicles has been investigated to determine whether curvature-induced changes in membrane lipid packing influence ganglioside uptake. Use of conventional liquid chromatography in conjunction with technically-improved molecular sieve gels permits ganglioside micelles to be separated from phospholipid vesicles of different average size including vesicles with diameters smaller than 40 nm and, thus, allows detailed study of native ganglioside GM1 incorporation into model membranes under conditions where complicating processes like fusion are readily detected if present. At 45 degrees C, the spontaneous transfer rate of GM1 from its micelles to small unilamellar vesicles (SUVs) comprised of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) is at least 3-fold faster than that to similar composition large unilamellar vesicles (LUVs) prepared by octyl glucoside dialysis. Careful analysis of ganglioside GM1 distribution among vesicle populations of differing average size reveals that GM1 preferentially incorporates into the smaller vesicles of certain populations. This behavior is observed in SUVs as well as in LUV-SUV mixtures and actually serves as a sensitive indicator for the presence of trace quantities of SUVs in various LUV preparations. Analysis of the results shows that both differences in the diffusional collision frequency between GM1 monomers and either SUVs or LUVs and curvature-induced changes in the interfacial lipid packing in either SUVs or LUVs can dramatically influence spontaneous ganglioside uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Differential scanning calorimetry and x-ray diffraction have been utilized to investigate the interaction of N-stearoylsphingomyelin (C18:0-SM) with cholesterol and dipalmitoylphosphatidylcholine (DPPC). Fully hydrated C18:0-SM forms bilayers that undergo a chain-melting (gel -->liquid-crystalline) transition at 45 degrees C, delta H = 6.7 kcal/mol. Addition of cholesterol results in a progressive decrease in the enthalpy of the transition at 45 degrees C and the appearance of a broad transition centered at 46.3 degrees C; this latter transition progressively broadens and is not detectable at cholesterol contents of >40 mol%. X-ray diffraction and electron density profiles indicate that bilayers of C18:0-SM/cholesterol (50 mol%) are essentially identical at 22 degrees C and 58 degrees C in terms of bilayer periodicity (d = 63-64 A), bilayer thickness (d rho-p = 46-47 A), and lateral molecular packing (wide-angle reflection, 1/4.8 A-(1)). These data show that cholesterol inserts into C18:0-SM bilayers, progressively removing the chain-melting transition and altering the bilayer structural characteristics. In contrast, DPPC has relatively minor effects on the structure and thermotropic properties of C18:0-SM. DPPC and C18:0-SM exhibit complete miscibility in both the gel and liquid-crystalline bilayer phases, but the pre-transition exhibited by DPPC is eliminated at >30 mol% C18:0-SM. The bilayer periodicity in both the gel and liquid-crystalline phases decreases significantly at high DPPC contents, probably reflecting differences in hydration and/or chain tilt (gel phase) of C18:0-SM and DPPC.  相似文献   

12.
The physical properties conferred to DPPC bilayers by including neoglycolipids composed by two different trisaccharides: mannose-mannose-mannose (3M) and glucose-mannose-glucose (GMG) attached to a cholesterol (cho) and a distearylglycerol (diC18) lipid moiety by a spacer were evaluated by means of the measurement of the electrokinetic potential and interfacial fluorescent probes. The phase properties measured with diphenylhexatriene (DPH) were correlated with the surface properties measured with merocyanine 540, dansyl, and Laurdan probes. The results show that the surface properties of large unilamellar vesicles depend on the sugar exposure to the water phase and also on the hydrocarbon moiety by which it is anchored to the bilayer. The combination of the cholesterol moiety with the saccharide attenuates the cooperativity decrease induced by the cholesterol moiety without the sugar portion. The neoglycolipid GMG-diC18 promotes opposite effects affecting slightly the cooperativity at the hydrocarbon core of DPPC and displacing the phase transition temperature to higher values. The presence of neoglycolipid with diC18 introduces defects in the packing at the interface of the membrane in the gel state. It is concluded that a relatively low proportion of neoglycolipids affects significantly the interfacial properties of DPPC bilayers in large unilamellar vesicles in the absence of changes at the membrane bulk at 25 degrees C.  相似文献   

13.
A series of glycophospholipids synthesized by coupling mono-, di-, or tri-saccharides to dioleoylphosphatidylethanolamine (DOPE) by reductive amination was used to investigate the interaction of glycophospholipids with phospholipid bilayer membranes. These synthetic glycophospholipids functioned as a stabilizer for the formation of DOPE bilayer vesicles. The minimal mol% of glycophospholipid needed to stabilize the DOPE vesicles were as follows: 8% N-neuraminlactosyl-DOPE (NANL-DOPE), 20% N-maltotriosyl-DOPE (MAT-DOPE), 30% N-lactosyl-DOPE (Lac-DOPE), and 42% N-galactosyl-DOPE (Gal-DOPE). The estimated hydration number of glycophospholipid in reverse micelles was 87, 73, 46, and 14 for NANL-DOPE, MAT-DOPE, Lac-DOPE, and Gal-DOPE, respectively. Thus, the hydration intensity of the glycophospholipid was directly related to the ability to stabilize the DOPE bilayer phase for vesicle formation. Glycophospholipids also reduced the transition temperature from gel to liquid-crystalline phase (Tm) of dipalmitoylphosphatidylcholine (DPPC) bilayers. Interestingly, incorporation of NANL-DOPE induced a decrease of membrane fluidity of DPPC bilayers in the gel phase while other glycophospholipids had no effect. Also, low level of NANL-DOPE but not other glycophospholipids increased the transition temperature (TH) from liquid-crystalline to hexagonal phase of dielaidoylphosphatidylethanolamine bilayers. These results showed that NANL-DOPE with a highly hydratable headgroup which provides a strong stabilization activity for the L alpha phase of phospholipid membranes, may also be involved in specific interactions with neighboring phospholipids via its saccharide moiety.  相似文献   

14.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6599-6603
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.  相似文献   

15.
We report molecular dynamics simulation of fully hydrated lipid bilayer of dimyristoyl phosphatidyl choline (DMPC) at room temperature with ganglioside GM1 attached to it in the upper layer under periodic boundary conditions. The simulation results indicate that the presence of a single GM1 molecule has local effects on the bilayer. Three sugar residues (GalNAc-Gal-Glc) of the pentasaccharide head group of GM1 remain on the lipid surface where as the NeuNAc residue extends out in the aqueous layer. The radial distribution functions suggest ordering of water molecules near the glycerol and carboxyl group of the sialic acid in the upper layer. One of the ceramide chains of GM1, the sphingosine chain, folds up and is stacked under the sugar residues lying on the surface. The other ceramide chain is inserted into the lipid bilayer. The arrangement of the polar head group as well as the acyl chains of the lipids which are immediate neighbours of the GM1 are modified compared to the non-neighbour ones and others at the lower layer. The time average conformation of GM1-pentasaccharide is stabilized by a number of inter residue hydrogen bonds that were observed experimentally. The trajectory average conformation of GM1-pentasaccharide was docked on to the cholera toxin molecule and the minimized complex reveals alternative binding modes between the toxin and the GM1-pentasaccharide moiety. The results of these simulation studies might help to understand the structure and nature of the effects of GM1 on the membrane at atomic resolution.  相似文献   

16.
Aqueous dispersions of a porcine lung surfactant (PLS) extract with and without cholesterol supplementation were analyzed by X-ray scattering. Lamellar liquid-crystalline and gel-type bilayer phases are formed, as in pure phosphatidylcholine (PC)-cholesterol systems. This PLS extract, developed for clinical applications, has a cholesterol content of less than 1% (w/w). Above the limit of swelling, the bilayer structure shows a melting (main) transition during heating at about 34 degrees C. When 13 mol% cholesterol was added to PLS, so that the cholesterol content of natural lung surfactant was reached, the X-ray scattering pattern showed pronounced changes. The main transition temperature was reduced to the range 20-25 degrees C, whereas according to earlier studies of disaturated PC-cholesterol bilayers in water the main transition remains almost constant when the amount of solubilized cholesterol is increased. Furthermore, the changes in scattering pattern at passing this transition in PLS-cholesterol samples were much smaller than at the same transition in PLS samples. These effects of cholesterol solubilization can be related to phase segregation within the bilayers, known from pure PC-cholesterol systems. One phase, solubilizing about 8 mol% cholesterol, exhibits a melting transition, whereas the other bilayer phase, with a liquid-crystalline disordered conformation, has a cholesterol content in the range 20-30 mol% and this phase shows no thermal transition. The relative amount of bilayer lipids that is transformed at the main transition in the PLS-cholesterol sample is therefore only half compared to that in PLS samples. The reduction in transition temperature in the segregated bilayer of lung surfactant lipids is probably an effect of enrichment of disaturated PC species in the phase, which is poor in cholesterol. This work indicates that cholesterol in lung surfactant regulates the crystallization behavior.  相似文献   

17.
The interaction of the galactocerebroside, N-palmitoylgalactosylsphingosine (NPGS), with cholesterol has been studied by differential scanning calorimetry (DSC) and x-ray diffraction. Thermal and structural studies demonstrate complex behavior characterized by two endothermic transitions: transition I (TI approximately equal to 50-60 degrees C) corresponding to an NPGS-cholesterol bilayer gel----bilayer liquid crystal transition II (TII where TI less than TII less than TNPGS) corresponding to an NPGS bilayer crystal (stable E form)----bilayer liquid crystal transition. For mixtures containing from 6 to 80 mol % cholesterol, x-ray diffraction studies at 22 degrees C (T less than TI) indicate two separate lamellar phases; an NPGS crystal bilayer phase and a cholesterol monohydrate phase. For cholesterol concentrations less than 50 mol % at TI less than T less than TII, NPGS-cholesterol liquid crystal bilayer and excess NPGS crystal bilayer phases are observed. For greater than 50 mol % cholesterol concentrations at these temperatures, an excess cholesterol monohydrate phase coexists with the NPGS-cholesterol liquid crystal bilayers. At T greater than TII, complete NPGS-cholesterol miscibility is only observed for less than 50 mol % cholesterol concentrations, whereas at greater than 50 mol % cholesterol an excess cholesterol phase is present. The solid phase immiscibility of cerebroside and cholesterol at low temperatures is suggested to result from preferential NPGS-NPGS associations via hydrogen bonding. The unique thermal and structural behavior of NPGS-cholesterol dispersions is contrasted with the behavior of cholesterol-phosphatidycholine and cholesterol-sphingomyelin bilayers. Thermal and structural studies of NPGS in dipalmitoylphosphatidylcholine (DPPC)/cholesterol (1:1, molar ratio) bilayers have been performed. For dispersions containing less than 20 mol % NPGS at 22 degrees C there are no observable calorimetric transitions and x-ray diffraction studies indicate complete lipid miscibility. At greater than 20 mol % NPGS, a high temperature transition is observed that is shown by x-ray diffraction studies to be due to an excess NPGS crystal bilayer----liquid crystal bilayer transition. Complete miscibility of NPGS in DPPC/cholesterol bilayers is observed at T greater than TNPGS. The properties of NPGS/DPPC/cholesterol bilayers are discussed in terms of the lipid composition of the myelin sheath.  相似文献   

18.
By means of the scanning differential calorimetry, x-ray diffractometry, and the dynamic light scattering, we have systematically studied the phase and packing properties of dipalmitoylphosphatidylcholine vesicles or multibilayers in the presence of ethanol. We have also determined the partial ternary phase diagram of such dipalmitoylphosphatidylcholine/water/ethanol mixtures. The directly measured variability of the structural bilayer parameters implies that ethanol binding to the phospholipid bilayers increases the lateral as well as the transverse repulsion between the lipid molecules. This enlarges the hydrocarbon tilt (by up to 23 degrees) and molecular area (by < or = 40%). Ethanol-phospholid association also broadens the interface and, thus, promotes lipid headgroup solvation. This results in excessive swelling (by 130%) of the phosphatidylcholine bilayers in aqueous ethanol solutions. Lateral bilayer expansion, moreover, provokes a successive interdigitation of the hydrocarbon chains in the systems with bulk ethanol concentrations of 0.4-1.2 M. The hydrocarbon packing density as well as the propensity for the formation of lamellar gel phases simultaneously increase. The pretransition temperature of phosphatidylcholine bilayers is more sensitive to the addition of alcohol (initial shift: delta Tp = 22 degrees C/mol) than the subtransition temperature (delta Ts reversible 5 degrees C/mol), whereas the chain-melting phase transition temperature is even less affected (delta Tm = 1.8 degrees C/mol). After an initial decrease of 3 degrees for the bulk ethanol concentrations below 1.2 M, the Tm value increases by 2.5 degrees above this limiting concentration. The gel-phase phosphatidylcholine membranes below Tm are fully interdigitated above this limiting concentration. The chain tilt on the fringe of full chain interdigitation is zero and increases with higher ethanol concentrations. Above Tm, some of the lipid molecules are solubilized by the bound ethanol molecules. More highly concentrated ethanol solutions (> 7 M) solubilize the phosphatidylcholine bilayers with fluid chains fully and result in the formation of mixed lipid-alcohol micelles.  相似文献   

19.
A simple procedure is described for preparing GM3 ganglioside, from a few milligrams to grams, from GM1-lactone (Sonnino et al., (1985) Glycoconjugate J 2: 343-54) [1]. The synthesis was carried out under the following optimal conditions: 30 mM GM1-lactone in 0.25 M H2SO4 in DMSO, 30 min, 70 degrees C, nitrogen atmosphere, strong stirring. The yield of GM3 was 55%. The procedure applied to milligram amounts of GD1b-dilactone gave GD3 ganglioside.  相似文献   

20.
Fourier transform infrared spectroscopy was applied to study the structural and thermal properties of bovine brain galactocerebroside (GalCer) containing amide linked non-hydroxylated or alpha-hydroxy fatty acids (NFA- and HFA-GalCer, respectively). Over the temperature range 0-90 degrees C, both GalCer displayed complex thermal transitions, characteristic of polymorphic phase behavior. Upon heating, aqueous dispersions of NFA- and HFA-GalCer exhibited high order-disorder transition temperatures near 80 and 72 degrees C, respectively. En route to the chain melting transition, the patterns of the amide I band of NFA-GalCer were indicative of two different lamellar crystalline phases, whereas those of HFA-GalCer were suggestive of lamellar gel and crystalline bilayers. Cooling from the liquid-crystalline phase resulted in the formation of another crystalline phase of NFA-GalCer and a gel phase of HFA-GalCer, with a phase transition near 62 and 66 degrees C, respectively. Prolonged incubation of GalCer bilayers at 38 degrees C revealed conversions among lamellar crystalline phases (NFA-GalCer) or between lamellar gel and crystalline bilayer structures (HFA-GalCer). Spectral changes indicated that the temperature and/or time induced formation of the lamellar crystalline structures of NFA- and HFA-GalCer was accompanied by partial dehydration and by rearrangements of the hydrogen bonding network and bilayer packing mode of GalCer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号