首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring lysosomal fusion in electrofused hybridoma cells   总被引:1,自引:0,他引:1  
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.  相似文献   

2.
Dendritic and tumor cells are fused to produce hybridoma cells, which are considered to be used as cellular vaccines to treat cancer. Previous strategies for hybridoma cell production were based on the quantification of the electrofusion yield by labeling the cytoplasm of both parental cell types. However, a better physiological strategy would be to label subcellular structures related directly to the antigen presentation process. Therefore, we here electrofused the same amount of CHO cells stained with red and green fluorescent dextrans and have monitored the yield of hybridoma cell formation by measuring the fusion of red and green late endocytic organelles that are involved in antigen presentation. By using confocal microscopy, the level of fused, fluorescently labelled late endocytic compartments in a single hybridoma cell was determined. The results demonstrate that organellar fusion occurs in hybridomas, which is time- and temperature-dependent. This approach therefore provides a new method for the hybridoma cell vaccine evaluation, which is based on the intracellular physiological mechanism of antigen presentation.  相似文献   

3.
We determined whether cells that are induced to undergo anoikis by matrix detachment can initiate apoptosis in healthy cells following electroporation-induced fusion. Separate populations of MDCK cells undergoing anoikis and stained with FITC-annexin or viable MDCK cells that were labeled with spectrally discrete fluorescent beads were electroporated. Cells were analyzed by flow cytometry for enumeration of viable cells with beads, apoptotic cells or fused cells. Electroporation promoted a 49-fold increase of the percentage of viable cells that had fused with apoptotic cells. Apoptotic cell-viable cell fusions were 8-fold more likely to not attach to cell culture plastic and 2.3-fold less likely to proliferate after 24hr incubation than viable cell fusion controls. These data demonstrate that apoptotic signals can be transferred between cells by electrofusion, possibly suggesting a novel investigative approach for optimizing targeted cell deletion in cancer treatment.  相似文献   

4.
Cell electrofusion is a safe, non-viral and non-chemical method that can be used for preparing hybrid cells for human therapy. Electrofusion involves application of short high-voltage electric pulses to cells that are in close contact. Application of short, high-voltage electric pulses causes destabilization of cell plasma membranes. Destabilized membranes are more permeable for different molecules and also prone to fusion with any neighboring destabilized membranes. Electrofusion is thus a convenient method to achieve a non-specific fusion of very different cells in vitro. In order to obtain fusion, cell membranes, destabilized by electric field, must be in a close contact to allow merging of their lipid bilayers and consequently their cytoplasm. In this video, we demonstrate efficient electrofusion of cells in vitro by means of modified adherence method. In this method, cells are allowed to attach only slightly to the surface of the well, so that medium can be exchanged and cells still preserve their spherical shape. Fusion visualization is assessed by pre-labeling of the cytoplasm of cells with different fluorescent cell tracker dyes; half of the cells are labeled with orange CMRA and the other half with green CMFDA. Fusion yield is determined as the number of dually fluorescent cells divided with the number of all cells multiplied by two.  相似文献   

5.
High-efficiency electrofusion between cells of different sizes was achieved by application of fusing electric pulses to cells in centrifuged pellets. Larger target cells (Chinese hamster ovary or L1210 cells) were stacked among smaller human erythrocytes or erythrocyte ghosts by sequential centrifugation at 700 g to form five-tier pellets in a specially designed centrifugation-electrofusion chamber. The membranes of erythrocytes and ghost were labeled with fluorescent membrane dye (1,1' dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (Dil)), and the contents of ghosts were loaded with water-soluble fluorescent dye (42-kDa fluorescein isothiocyanate dextran (FITC-dextran)), to monitor heterogeneous cell fusion. Fusion efficiency was assayed by the extent of either membrane dye mixing or contents (FITC-dextran) mixing with target cells. Four rectangular electric pulses at 300 V and 80 microseconds each were found to give the optimal fusion results of approximately 80% heterogeneous fusion by the content-mixing assay and approximately 95% by the membrane-dye-mixing assay. Cell viability remained greater than 80% after electrofusion. Because of the electric breakdown of cell membranes at the beginning of the pulse, the pellet resistance and hence the partial voltage across the pellet reduced rapidly during the remaining pulse time. This voltage redistribution favored the survival of fused cells. The limited colloidal-osmotic swelling of cells in pellets enhanced cell-cell contact and increased the pellet resistance after each pulse. As a result, the partial voltage across the pellet was restored when the next pulse was applied. This redistribution of pulse voltage in the pellet system permitted the breakdown of cell membranes at a lower applied voltage threshold than that required for electrofusion of cells in suspension or in dielectrophoretic cell chains. The cell viability and soluble dye retention within cells (FITC-dextran) remained at the same high levels for 3 h when the cells were incubated in respective culture media with serum at 37 degrees C. Viability and dye retention decreased significantly within 30 min when cells were incubated in phosphate-buffered saline without serum. The pellet technique was applied to form hybridomas by fusion of larger SP2/0 murine myelomas with smaller naive mouse lymphocytes. An optimum of 173 +/- 70 hypoxanthine aminopterin thymidine (HAT)-selected clones of the hybridomas was obtained from 40,000 SP2/0 cells and 1.5 x 10(6) lymphocytes used in each trial. This high-efficiency fusion technique may be adapted to mediate drug and gene transfer to target cells ex vivo as well as to form hybrid cells with limited cell sources.  相似文献   

6.
7.
The present study was undertaken to determine the efficiency of HVJ treatment and electrofusion for pronuclear transplantation in the mouse. The output voltage and duration of the pulses were fixed to 200 μsec at 10 V or to 150 μsec at 15 V for electrofusion, because the maximum rates of blastomere fusion of 2-cell embryos and development of fused embryos in vitro were obtained under these conditions. Although the proportion of eggs with fused karyoplast (78%) and the fused eggs developed to morulae or blastocysts (67%) was significantly lower than those obtained after HVJ treatment (94% and 94%), the proportion of pregnant recipients and young obtained after treatment of fused eggs was not significantly different between these two procedures. It is advised that electrofusion can be used as a fusogenic procedure for pronuclear transplantation in the mouse in some cases where HVJ cannot be applied.  相似文献   

8.
In this paper, we describe the procedure of large-scale and efficient electrofusion for pronuclear transplantation in mouse eggs and the tolerance of the eggs for electric stimulus, assessed in vitro and in vivo development. The fusion chamber was arranged in parallel by dielectrodes (30-mm length, 1-mm width, and 2-mm height), and 0.3 M mannitol in distilled water was used as a fusion solution. The agglutination cleavage of enucleated eggs with karyoplast was easily orientated in parallel with electrodes by alternating current between 100 and 500 kHz at 2 and 10 V/mm. Immediately after the orientation, a direct current of 150 V/mm was given for 200 μsec twice and repeated three times to induce fusion of the enucleated eggs with karyoplast. More than five eggs, at least, can be submitted to electrofusion at the same time. The eggs that were not fused were treated again in the same manner. The proportion of eggs fused with karyoplast was increased by preincubation in M16 medium prior to submitting them to the electrofusion. When the eggs were incubated for 60 min, 80% of them were fused with karyoplast by the first electric treatment; in contrast, only 19% of the eggs were fused if they were submitted to electrofusion directly. It was found that between the CD-1 and F1 strains there was a difference in tolerance of the eggs to electric stimulus and that this was depend on the nuclei but not on cytoplasm. The proportion of development to blastocyst in the eggs fused with the pronuclear karyoplast derived from F1 (75 and 71%) was twice that of the eggs fused with the pronuclei derived from CD-1 strain (25 and 37%). After transfer to recipients, live young were obtained from both the eggs fused with karyoplast following one or two electrofusion exposures.  相似文献   

9.
Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells.  相似文献   

10.
A new quantitative approach to study cell membrane electrofusion has been developed. Erythrocyte ghosts were brought into close contact using dielectrophoresis and then treated with one square or even exponentially decaying fusogenic pulse. Individual fusion events were followed by lateral diffusion of the fluorescent lipid analogue 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) from originally labeled to unlabeled adjacent ghosts. It was found that ghost fusion can be described as a first-order rate process with corresponding rate constants; a true fusion rate constant, k(f), for the square waveform pulse and an effective fusion rate constant, k(ef), for the exponential pulse. Compared with the fusion yield, the fusion rate constants are more fundamental characteristics of the fusion process and have implications for its mechanisms. Values of k(f) for rabbit and human erythrocyte ghosts were obtained at different electric field strength and temperatures. Arrhenius k(f) plots revealed that the activation energy of ghost electrofusion is in the range of 6-10 kT. Measurements were also made with the rabbit erythrocyte ghosts exposed to 42 degrees C for 10 min (to disrupt the spectrin network) or 0.1-1.0 mM uranyl acetate (to stabilize the bilayer lipid matrix of membranes). A correlation between the dependence of the fusion and previously published pore-formation rate constants for all experimental conditions suggests that the cell membrane electrofusion process involve pores formed during reversible electrical breakdown. A statistical analysis of fusion products (a) further supports the idea that electrofusion is a stochastic process and (b) shows that the probability of ghost electrofusion is independent of the presence of Dil as a label as well as the number of fused ghosts.  相似文献   

11.
Fusion of nuclei was studied in electrofused cells using staining procedures and DNA flow cytometry. Homogeneous and heterogeneous electrofusion of Ehrlich ascites tumor cells. Muntjac cells and V79-S181 cells were performed in balanced-salt solutions at low temperature. Incubation of the cells subjected to electrofusion in fusion media for about 2 h was required to complete cell fusion and, in particular, nuclear membrane fusion. Under optimum electrofusion conditions it was found that fusion of nuclei is a very frequent event. Half of the fused cells (about 30 to 50% of the field-exposed cells) underwent nuclear membrane fusion. It is shown that the high frequency of nuclear membrane fusion in electrofused, unsynchronised cells resulted from intracellular dielectrophoresis occurring during cell alignment. In accordance with theory, maximum nuclear membrane fusion was observed using alignment fields of between 1 and 4 MHz (depending on the cell species), that is above the frequencies at which the plasmalemma capacity no longer shielded the cell interior from participation in the conduction process. In this frequency range a potential difference can be built up across the nuclear membrane leading to repositioning of the nuclei into the contact zone of the plasmalemmas of two attached cells. This intracellular dielectrophoresis apparently facilitated fusion of nuclei once intermingling of the plasma membranes had occurred. It was further demonstrated that exponentially growing cells showed higher cell fusion rates than cells taken from the unfed plateau phase. One, but not the only reason, might be the higher ATP content of exponentially growing cells compared to cells of the plateau phase. Addition of external ATP to plateau phase cells during electrofusion resulted, in accordance with this assumption, in an increase of fusion frequency, whereas ATP had apparently no effect on the fusion yield of exponentially growing cells. G1 cells obtained by mitotic selection after nocodazole-induced blockage in metaphase also showed higher cellular and nuclear membrane fusion yields than exponentially growing cells. Most importantly, it could be demonstrated both experimentally and theoretically that electrofusion of cells in a dielectrophoretically aligned chain is controlled by a simple law of probability resulting predominantly in fusion of two cells independent of the number of cells in the chain. The likelihood of fusion of various numbers of cells in a chain is given by the appropriate power of the probability of two-cell fusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Y Wu  J G Montes    R A Sjodin 《Biophysical journal》1992,61(3):810-815
Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It was found that plots of pseudothreshold vs reciprocal half time were linear for each protocol; when extrapolated to reciprocal half time = 0 (i.e., t----infinity), these lines intersected the ordinate at values of the field strength considered to be the true electrofusion thresholds. In this fashion, the contact-first protocol gave an electrofusion threshold of 46.5 +/- 11.5 V/mm for hemoglobin-free ghosts (white ghosts) and 40.9 +/- 8.8 V/mm for ghosts with fractional hemoglobin (pink ghosts), while the threshold for the pulse-first protocol applied to pink ghosts was determined to be 93.4 +/- 11.0 V/mm. Although the thresholds depended on the electrofusion protocol, plots of critical field strength vs reciprocal time had the same slopes, i.e., approximately 24 Vs/mm. The results suggest that the fusogenic state induced by an electric pulse in either the contact-first protocol or the pulse-first protocol (long-lived fusogenic state) may in fact share a common mechanism, if the two states are not actually identical.  相似文献   

13.
The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells’ response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41?±?9?% yield, while in isotonic buffer 32?±?11?% yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1?% in isotonic buffer to 10?±?4?% in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.  相似文献   

14.
Gene targeting technology is not available in the rat which is an animal model of major importance, e.g., in cardiovascular research. This is due to the fact that the rat embryonic stem cell (ESC)-like cells established by several groups do not form germ-line chimeras when injected into blastocysts. In the mouse, the aggregation of ESC with tetraploid embryos has allowed the generation of animals completely derived from these cells. However, aggregation of rat ESC-like cells with tetraploid rat embryos has not yet been attempted to evaluate their developmental capacity. Therefore, we established a method to produce tetraploid rat embryos by fusion at the two-cell stage. Chemical fusion by polyethylene glycol (PEG) was shown to be less efficient (56.3% fused embryos) than electrofusion (96.1% fused embryos). The rate of development of fused embryos to blastocysts was independent of the fusion method and similar to the rate of control embryos. However, this rate was lower when the embryos had been cultured from the zygote state before fusion (14-20%) compared to freshly isolated two-cell embryos (41-63%). Alike for the mouse, blastocysts derived from fused two-cell rat embryos contained about half the number of cells as control blastocysts and were homogeneously tetraploid with no evidence of mosaicism. This method may be useful for the establishment of gene-targeting technology in the rat.  相似文献   

15.
The absence of surface costimulatory molecules explains in part the lack of an effective anti-tumor immune response in tumor-bearing animals, even though unique tumor antigens may be presented by class I MHC. We determined that the immunogenicity of a murine neuroblastoma, Neuro-2a, which lacks surface costimulatory molecules, could be increased by electrically induced fusion with dendritic cells. Electrofusion induced a higher level of cell fusion than polyethylene glycol, and tumor/dendritic cell heterokaryons expressed high levels of costimulatory molecules. While Neuro-2a was unable to induce the proliferation of syngeneic or allogeneic T cells in vitro, fused cells were able to induce T cell responses both in vitro and in vivo. When fused dendritic tumor cells were used as a cancer vaccine, immunized mice were significantly protected from challenge with Neuro-2a. We propose that electrofusion with patient-derived tumor and dendritic cells may provide a rapid means to produce patient-specific tumor vaccines.  相似文献   

16.
Summary Fusion products were created by the electrofusion of single sperm cells with single synergids and central cells. The synergid was also fused with the sperm cell, occasionally in the presence of adhering second synergids, egg cells, and central cells. Single egg cells were fused with single sperm cells in the presence of adhering synergids and the central cell. Cytoplasmic organelles were transmitted through the fertilization process by electrofusion using cytoplasts of maize mesophyll cells. Cell reconstitution was achieved by fusion of one or two sperm cells with single enucleated protoplasts, thus creating a haploid or a diploid cell.  相似文献   

17.
Vacuolated and evacuolated tobacco mesophyll protoplasts were electrically fused in hypo-osmolar media by using an alternating field of modulated amplitude for alignment. The vacuolated fusion partner was isolated from Nicotiana tabaccum L. cv Xanthi and the evacuolated one from the streptomycin-resistant strain Nicotiana tabaccum L. cv Petit Havana SR1. The field and osmolarity conditions used ensured relatively high yields of heterologous fusion products despite the differences in density and size of the parental cells. After removal of the evacuolated, streptomycin-resistant fused and unfused protoplasts by flotation of vacuole-containing cells on iso-osmolar sucrose medium, the cybrids and hybrids were cultured in 25 microliters drops of agarose. During the first 5 weeks the non-fused Xanthi-protoplasts were used as a nurse culture. After addition of streptomycin to the growth media, cybrids and hybrids were successfully selected whereas fused and unfused vacuole-containing protoplasts died within 6 days. Only the streptomycin-resistant cybrids and hybrids developed into whole plants. On average a yield of 0.025% of streptomycin-resistant plants (referred to the total number of parental cells) was obtained. Polyacrylamide gel electrophoresis of leaf extracts of these plants showed that at least 50% of the streptomycin-resistant plants had a hybrid-esterase isoenzyme pattern. The protocol can be generalised by fusion of iodoacetamide-inactivated vacuolated protoplasts with meristematic (or evacuolized) protoplasts carrying no genetic marker. Use of evacolated protoplasts for electrofusion with vacuole-containing protoplasts therefore offers a way of overcoming the lack of suitable genetic markers for hybrid selection.  相似文献   

18.
电脉冲介导金鱼囊胚细胞融合及其发育能力的研究   总被引:1,自引:0,他引:1  
高晓虹  曹明丹 《动物学报》1990,36(2):199-204
本实验首次成功地利用电脉冲介异法使金鱼的囊胚细胞融合,融合率高于95%,并通过细胞核移植方法,将融合细胞的细胞核移入金鱼成熟未受精的去核卵内,以了解融合后细胞核的发育能力。实验中共移植111个细胞核,得44个囊胚、7个原肠胚和1条活了8天的幼鱼(因不进食而死亡)。并对移核后发育至囊胚的胚胎用静态光度计测定了DNA含量,共测定了11个移核胚胎的细胞,其中9个移核囊胚细胞核的DNA含量增加,这一结果证明:利用电脉冲介导法能有效地转移外源染色体,供体核有促进个体发育的能力。为人工干与鱼类染色体组的组成,进一步研究鱼类个体发育对染色体倍性的依赖关系以及体细胞遗传提供了一条新途径。  相似文献   

19.
S K Huang  M Cheng    S W Hui 《Biophysical journal》1990,58(5):1119-1126
Monolayers of human erythrocytes, immobilized on a cover slip, were induced to fuse by polyethylene glycol (mol wt 8,000). The mobility of fluorescent probes, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadizol-4-yl)amino]dodecanoyl] phosphatidyl-choline (C12-NBD-PC), from labeled cells to unlabeled cells was monitored by video-enhanced fluorescence microscopy. A dequenching curve was obtained from the measurement of fluorescence intensities of pairs of fused cells over time. The dequenching curve and the curve obtained from macroscopic measurements of a cell monolayer (described in the preceding article) were compared and discussed. The slow probe transfer rate between a pair of fused cells was explained by a diffusion model based on membrane area conservation and the geometry of the fusion lumen. An equivalent lumen between two fused cells, thought to be the main rate limitation of probe mobility after fusion, was calculated to be approximately 130 nm in diameter. Lumens of 75 nm in diameter were observed by electron microscopy. Thus, the rate of macroscopic fluorescence dequenching depends not only upon the fusion efficiency, but also upon the number of simultaneous fusion partners, the geometry of their contact points, and the lateral mobility of the fluorescent probes through these points. The relative fusion efficiency can be derived only from the saturation dequenching values.  相似文献   

20.
Late endocytic compartments, containing MHC class II molecules in antigen presenting cells, fuse to each other in order to deliver antigens to these molecules. We have shown previously that fusion of late endocytic compartments takes place also in hybridomas. Therefore, we investigate here whether the level of fused late endocytic compartments affects the immunostimulatory capacity of hybridomas obtained by the electrofusion of dendritic and tumor cells. The level of fused late endocytic compartments in a single hybridoma cell was assessed and samples of electrofused cells were then cocultured with autologous T cells, resulting in the priming of naïve T cells. To test the immunostimulatory capacity of hybridoma cells, T-cell-induced cytotoxicity of tumor cells was assayed. The results demonstrate that in vitro cytotoxic T cell responses are enhanced if a higher percentage of fused late endocytic compartments is present in the cell population of electrofused hybridoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号