首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alport syndrome (AS) is an inherited disorder characterized by glomerular basement membrane (GBM) abnormality and development of chronic kidney disease at an early age. The cause of AS is a genetic mutation in type IV collagen, and more than 80% of patients have X-linked AS (XLAS) with mutation in COL4A5. Although the causal gene has been identified, mechanisms of progression have not been elucidated, and no effective treatment has been developed. In this study, we generated a Col4a5 mutant mouse harboring a nonsense mutation (R471X) obtained from a patient with XLAS using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system. Col4a5 mRNA and protein expressions were not observed in the kidneys of hemizygous R471X male mice. R471X mice showed proteinuria and hematuria. Pathology revealed progression of glomerulosclerosis and interstitial fibrosis by age. Electron microscopy identified irregular thickening in GBM accompanied by irregular lamination. These observations were consistent with the clinical and pathological features of patients with AS and other established models. In addition, our mice models develop end-stage renal disease at the median age of 28 weeks, much later compared to previous models much more consistent with clinical course of human XLAS. Our models have advantages for future experiments in regard with treatment for human XLAS.  相似文献   

2.
Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome.  相似文献   

3.
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.  相似文献   

4.
Maturation of the glomerular basement membrane (GBM) is essential for maintaining the integrity of the renal filtration barrier. Impaired maturation causes proteinuria and renal fibrosis in the type IV collagen disease Alport syndrome. This study evaluates the role of collagen receptors in maturation of the GBM, matrix accumulation and renal fibrosis by using mice deficient for discoidin domain receptor 1 (DDR1), integrin subunit α2 (ITGA2), and type IV collagen α3 (COL4A3). Loss of both collagen receptors DDR1 and integrin α2β1 delays maturation of the GBM: due to a porous GBM filtration barrier high molecular weight proteinuria that more than doubles between day 60 and day 100. Thereafter, maturation of the GBM causes proteinuria to drop down to one tenth until day 200. Proteinuria and the porous GBM cause accumulation of glomerular and tubulointerstitial matrix, which both decrease significantly after GBM-maturation until day 250. In parallel, in a disease with impaired GBM-maturation such as Alport syndrome, loss of integrin α2β1 positively delays renal fibrosis: COL4A3−/−/ITGA2−/ double knockouts exhibited reduced proteinuria and urea nitrogen compared to COL4A3−/−/ITGA2+/− and COL4A3−/−/ITGA2+/+ mice. The double knockouts lived 20% longer and showed less glomerular and tubulointerstitial extracellular matrix deposition than the COL4A3−/− Alport mice with normal integrin α2β1 expression. Electron microscopy illustrated improvements in the glomerular basement membrane structure. MMP2, MMP9, MMP12 and TIMP1 were expressed at significantly higher levels (compared to wild-type mice) in COL4A3−/−/ITGA2+/+ Alport mice, but not in COL4A3+/+/ITGA2−/− mice. In conclusion, the collagen receptors DDR1 and integrin α2β1 contribute to regulate GBM-maturation and to control matrix accumulation. As demonstrated in the type IV collagen disease Alport syndrome, glomerular cell–matrix interactions via collagen receptors play an important role in the progression of renal fibrosis.  相似文献   

5.
We have generated transgenic mice harboring the deletion of exon 48 in the mouse 1(II) procollagen gene (Col2a1). This was the first dominant negative mutation identified in the human 1(II) procollagen gene (COL2A1). Patients carrying a single allele with this mutation suffer from a severe skeletal disorder called spondyloepiphyseal dysplasia congenita (SED). Transgenic mice phenotype was neonatally lethal with severe respiratory failure, short bones, and cleft palate. Transgene mRNA was expressed at high levels. Growth plate cartilage of transgenic mice presented morphological abnormalities and reduced number of collagen type II fibrils. Chondrocytes carrying the mutation showed altered expression of several differentiation markers, like fibroblast growth factor receptor 3 (Fgfr3), Indian hedgehog (Ihh), runx2, cyclin-dependent kinase inhibitor P21CIP/WAF (Cdkn1a), and collagen type X (Col10a1), suggesting that a defective extracellular matrix (ECM) depleted of collagen fibrils affects chondrocytes differentiation and that this defect participates in the reduced endochondral bone growth observed in chondrodysplasias caused by mutations in COL2A1. skeletal dyplasias; growth plate; cartilage extracellular matrix; spondyloepiphyseal dysplasia congenita  相似文献   

6.
7.
The retinoid X receptor beta gene (Rxrb) is located just upstream of the alpha2(XI) collagen chain gene (Col11a2) in a head-to-tail manner. However, the domain structures of these genes are unknown. Col11a2 is specifically expressed in cartilage. In the present study, we found Rxrb expression in various tissues with low expression in the cartilage. Col11a2 1st intron enhancer directed cartilage specific expression when linked to the heterologous promoter in transgenic mice. These results suggest the presence of enhancer-blocking elements that insulate Rxrb promoter from the Col11a2 enhancer. So far, most of insulators examined in vertebrates contain a binding site for CTCF. We found two possible CTCF-binding sites: one (11P) in the intergenic region between Rxrb and Col11a2 by electrophoretic mobility shift assays, and the other in the 4th intron of RXRB by data base search. To examine the function of these elements, we prepared bacterial artificial chromosome (BAC) transgene constructs containing a 142-kb genomic DNA insert with RXRB and COL11A2 sequences in the middle. Mutation of 11P significantly decreased the RXRB promoter activity in muscular cells and significantly increased expression levels of RXRB in chondrosarcoma cells. In transgenic mouse assays, the wild-type BAC transgene partly recapitulated endogenous Rxrb expression patterns. A 507-bp deletion mutation including 11P enhanced the cartilage-specific activity of the RXRB promoter in BAC transgenic mice. Chromatin immunoprecipitation analysis showed that CTCF was associated with RX4, but not with 11P. Our results showed that the intergenic sequence including 11P insulates Rxrb promoter from Col11a2 enhancer, possibly associating with unknown factors that recognize a motif similar to CTCF.  相似文献   

8.
The COOH-terminal non-collagenous domains (NC1) of type IV collagen from glomerular basement membranes (GBM), lens capsule basement membranes, and Descemet's membrane varied in the distribution of their NC1 subunits. All of these basement membranes (BMs) contained both classical (alpha 1(IV) and alpha 2(IV)) and novel collagen chains (alpha 3(IV), alpha 4(IV) and the Alport antigen). Whereas GBM had a predominance of disulfide-bonded subunits, the lens capsule and Descemet's membrane were primarily monomeric, differences that are likely related to the functional and structural diversity of collagen in various tissues. A heterodimer formed from monomeric subunits of alpha 3(IV) and the Alport antigen exists in human and bovine GBM. This dimer represents an important cross-link of the NC1 domain of novel collagen. Additionally, immunoaffinity methodology showed that the novel BM collagen hexamers segregate into populations containing only novel BM subunits without the participation of the classical subunits (alpha 1(IV) and alpha 2(IV)). These data provided evidence for the presence of two separate networks of BM collagen: one containing alpha 1(IV) and alpha 2(IV), and the other consisting of the novel collagen chains.  相似文献   

9.
10.
A novel type IV collagen, alpha 3(IV), has recently been identified in human and bovine basement membranes. Here we describe the cloning and sequencing of a cDNA encoding 218 residues of the NC1 domain of the human alpha 3(IV) chain. Of interest is the possible role of abnormalities of the alpha 3(IV) chain in Alport syndrome, as suggested by the failure to detect the NC1 domain of alpha 3(IV) in the basement membranes of some Alport syndrome patients. To determine whether the alpha 3(IV) gene (COL4A3) may be mutated in Alport syndrome, we localized it, by somatic cell hybrid analysis and in situ hybridization of metaphase chromosomes, to chromosome 2q35-2q37. Mutations in alpha 3(IV) cannot therefore be responsible for the vast majority of cases of Alport syndrome, which have been shown to be X linked. One explanation for the immunochemical data implicating alpha 3(IV) in Alport syndrome pathogenesis is that mutations of the alpha 5(IV) chain, which has been localized to Xq22 and found to be mutated in at least three kindreds with Alport syndrome, lead to failure to incorporate the alpha 3(IV) chains into the multimeric structure of glomerular basement membrane in a stable fashion.  相似文献   

11.
Anti-glomerular basement membrane (GBM) antibody nephritis is caused by an autoimmune or alloimmune reaction to the NC1 domains of alpha3alpha4alpha5(IV) collagen. Some patients with X-linked Alport syndrome (XLAS) develop post-transplant nephritis mediated by pathogenic anti-GBM alloantibodies to collagen IV chains present in the renal allograft but absent from the tissues of the patient. In this work, the epitopes targeted by alloantibodies from these patients were identified and characterized. All XLAS alloantibodies recognized conformational epitopes in the NC1 domain of alpha5(IV) collagen, which were mapped using chimeric alpha1/alpha5 NC1 domains expressed in mammalian cells. Allograft-eluted alloantibodies mainly targeted two conformational alloepitopes mapping to alpha5NC1 residues 1-45 and 114-168. These regions also encompassed the major epitopes of circulating XLAS alloantibodies, which in some patients additionally targeted alpha5NC1 residues 169-229. Both kidney-eluted and circulating alloantibodies to alpha5NC1 distinctively targeted epitopes accessible in the alpha3alpha4alpha5NC1 hexamers of human GBM, unlike anti-GBM autoantibodies, which targeted sequestered alpha3NC1 epitopes. The results identify two immunodominant alpha5NC1 epitopes as major alloantigenic sites of alpha3alpha4alpha5(IV) collagen specifically implicated in the pathogenesis of post-transplant nephritis in XLAS patients. The contrast between the accessibility of these alloepitopes and the crypticity of autoepitopes indicates that distinct molecular forms of antigen may initiate the immunopathogenic processes in the two forms of anti-GBM disease.  相似文献   

12.
The ultrafiltration function of the glomerular basement membrane (GBM) of the kidney is impaired in genetic and acquired diseases that affect type IV collagen. The GBM is composed of five (alpha1 to alpha5) of the six chains of type IV collagen, organized into an alpha1.alpha2(IV) and an alpha3.alpha4.alpha5(IV) network. In Alport syndrome, mutations in any of the genes encoding the alpha3(IV), alpha4(IV), and alpha5(IV) chains cause the absence of the alpha3. alpha4.alpha5 network, which leads to progressive renal failure. In the present study, the molecular mechanism underlying the network defect was explored by further characterization of the chain organization and elucidation of the discriminatory interactions that govern network assembly. The existence of the two networks was further established by analysis of the hexameric complex of the noncollagenous (NC1) domains, and the alpha5 chain was shown to be linked to the alpha3 and alpha4 chains by interaction through their respective NC1 domains. The potential recognition function of the NC1 domains in network assembly was investigated by comparing the composition of native NC1 hexamers with hexamers that were dissociated and reconstituted in vitro and with hexamers assembled in vitro from purified alpha1-alpha5(IV) NC1 monomers. The results showed that NC1 monomers associate to form native-like hexamers characterized by two distinct populations, an alpha1.alpha2 and alpha3.alpha4.alpha5 heterohexamer. These findings indicate that the NC1 monomers contain recognition sequences for selection of chains and protomers that are sufficient to encode the assembly of the alpha1.alpha2 and alpha3.alpha4.alpha5 networks of GBM. Moreover, hexamer formation from the alpha3, alpha4, and alpha5 NC1 monomers required co-assembly of all three monomers, suggesting that mutations in the NC1 domain in Alport syndrome may disrupt the assembly of the alpha3.alpha4.alpha5 network by interfering with the assembly of the alpha3.alpha4.alpha5 NC1 hexamer.  相似文献   

13.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

14.
The X-linked form of Alport syndrome is associated with mutations in the COL4A5 gene, which is located at Xq22.3 and encodes the α5 chain of type IV collagen. Here we clinically characterized a Chinese family with Alport Syndrome, but no ocular or hearing abnormalities have been observed in any patient in the family. Through Linkage analysis and direct DNA sequencing, a novel complex deletion/insertion mutation c.359_363delGTATTinsATAC in the COL4A5 gene was identified in the family. The mutation was found in all affected family members, but was not present in the unaffected family individuals or the 200 controls. The predicted mutant protein in the family is a truncated protein consisting of only 153 residues. Our report for the first time revealed that the frameshift mutation in the type IV collagen chain α5 causes only renal disease, without extrarenal lesion. Our study broadens genotypic and phenotypic spectrum of COL4A5 mutations associated with Alport syndrome.  相似文献   

15.
16.
17.
The basement membrane is important for proper tissue development, stability, and physiology. Major components of the basement membrane include laminins and type IV collagens. The type IV procollagens Col4a1 and Col4a2 form the heterotrimer [alpha1(IV)]2[alpha2(IV)], which is ubiquitously expressed in basement membranes during early developmental stages. We present the genetic, molecular, and phenotypic characterization of nine Col4a1 and three Col4a2 missense mutations recovered in random mutagenesis experiments in the mouse. Heterozygous carriers express defects in the eye, the brain, kidney function, vascular stability, and viability. Homozygotes do not survive beyond the second trimester. Ten mutations result in amino acid substitutions at nine conserved Gly sites within the collagenous domain, one mutation is in the carboxy-terminal noncollagenous domain, and one mutation is in the signal peptide sequence and is predicted to disrupt the signal peptide cleavage site. Patients with COL4A2 mutations have still not been identified. We suggest that the spontaneous intraorbital hemorrhages observed in the mouse are a clinically relevant phenotype with a relatively high predictive value to identify carriers of COL4A1 or COL4A2 mutations.  相似文献   

18.
《The Journal of cell biology》1996,135(5):1403-1413
Collagen IV is a major structural component of all basal laminae (BLs). Six collagen IV alpha chains are present in mammals; alpha 1 and alpha 2(IV) are broadly expressed in embryos and adults, whereas alpha 3- 6(IV) are restricted to a defined subset of BLs. In the glomerular BL of the kidney, the alpha 1 and alpha 2(IV) chains are replaced by the alpha 3-5(IV) chains as development proceeds. In humans, mutation of the collagen alpha 3, alpha 4, or alpha 5(IV) chain genes results in a delayed onset renal disease called Alport syndrome. We show here that mice lacking collagen alpha 3(IV) display a renal phenotype strikingly similar to Alport syndrome: decreased glomerular filtration (leading to uremia), compromised glomerular integrity (leading to proteinuria), structural changes in glomerular BL, and glomerulonephritis. Interestingly, numerous changes in the molecular composition of glomerular BL precede the onset of renal dysfunction; these include loss of collagens alpha 4 and alpha 5(IV), retention of collagen alpha 1/2(IV), appearance of fibronectin and collagen VI, and increased levels of perlecan. We suggest that these alterations contribute, along with loss of collagen IV isoforms per se, to renal pathology.  相似文献   

19.
20.
The gene coding for the alpha 5 chian of type IV collagen (alpha 5(IV) collagen), which maps to Xq22, is a candidate gene for the X-linked dominant disease Alport syndrome (AS). Using three cDNA clones, covering the 3' end of the alpha 5(IV) collagen gene, 3 of 38 patients have been identified with mutations in this gene. Each of these patients shows a gross rearrangement of DNA: a deletion of at least 35 kb, an insertion/deletion event involving approximately 25 kb, and a duplication of at least 35 kb of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号