首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD44 on lymphocytes binding to its carbohydrate ligand hyaluronan can mediate primary adhesion (rolling interactions) of lymphocytes on vascular endothelial cells. This adhesion pathway is utilized in the extravasation of activated T cells from the blood into sites of inflammation and therefore influences patterns of lymphocyte homing and inflammation. Hyaluronan is a glycosaminoglycan found in the extracellular matrix and is involved in a number of biological processes. We have shown that the expression of hyaluronan on the surface of endothelial cells is inducible by proinflammatory cytokines. However, the manner through which hyaluronan is anchored to the endothelial cell surface so that it can resist shear forces and the mechanism of the regulation of the level of hyaluronan on the cell surface has not been investigated. In order to characterize potential hyaluronan receptors on endothelial cells, we performed analyses of cell surface staining by flow cytometry on intact endothelial cells and ligand blotting assays using membrane fractions. Hyaluronan binding activity was detected as a major species corresponding to the size of CD44, and this was confirmed to be the same by Western blotting and immunoprecipitation. Moreover, alterations in the surface level of hyaluronan after tumor necrosis factor-alpha stimulation is regulated primarily by changes in the cell surface levels of the hyaluronan-binding form of CD44. In laminar flow assays, lymphoid cells specifically roll on hyaluronan anchored by purified CD44 coated on glass tubes, indicating that the avidity of the endothelial CD44/hyaluronan interaction is sufficient to support rolling adhesions under conditions mimicking physiologic shear forces. Together these studies show that CD44 serves to anchor hyaluronan on endothelial cell surfaces, that activation of CD44 is a major regulator of endothelial surface hyaluronan expression, and that the non-covalent interaction between CD44 and hyaluronan is sufficient to provide resistance to shear under physiologic conditions and thereby support the initial steps of lymphocyte extravasation.  相似文献   

2.
3.
Vertebrate gastrulation involves complex coordinated movements of cells and cell layers to establish the axial structures and the general body plan. Adhesion molecules and the components of extracellular matrix were shown to be involved in this process. However, other participating molecules and detailed mechanisms of the control of gastrulation movements remain largely unknown. Here, we describe a novel Xenopus gene camello (Xcml) which is expressed in the suprablastoporal zone of gastrulating embryos. Injection of Xcml RNA into dorsovegetal blastomeres retards or inhibits gastrulation movements. Database searches revealed a family of mammalian mRNAs encoding polypeptides highly similar to Xcml protein. Characteristic features of the camello family include the presence of the central hydrophobic domain and the N-acetyltransferase consensus motifs in the C-terminal part, as well as functional similarity to Xcml revealed by overexpression studies in Xenopus embryos. Xcml expression results in the decrease of cell adhesion as demonstrated by the microscopic analysis and the blastomere aggregation assay. Cell fractionation and confocal microscopy data suggest that Xcml protein is localized in the secretory pathway. We propose that Xcml may fine tune the gastrulation movements by modifying the cell surface and possibly extracellular matrix proteins passing through the secretory pathway.  相似文献   

4.
UDP-glucose dehydrogenase (UGDH) supplies the cell with UDP-glucuronic acid (UDP-GlcUA), a precursor of glycosaminoglycan and proteoglycan synthesis. Here we reported the cloning and the characterization of the UGDH from the amphibian Xenopus laevis that is one of the model organisms for developmental biology. We found that X. laevis UGDH (xUGDH) maintained a very high degree of similarity with other known UGDH sequences both at the genomic and the protein levels. Also its kinetic parameters are similar to those of UGDH from other species. During X. laevis development, UDGH is always expressed but clearly increases its mRNA levels at the tail bud stage (i.e. 30 h post-fertilization). This result fits well with our previous observation that hyaluronan, a glycosaminoglycan that is synthesized using UDP-GlcUA and UDP-N-acetylglucosamine, is abundantly detected at this developmental stage. The expression of UGDH was found to be related to hyaluronan synthesis. In human smooth muscle cells the overexpression of xUGDH or endogenous abrogation of UGDH modulated hyaluronan synthesis specifically. Our findings were confirmed by in vivo experiments where the silencing of xUGDH in X. laevis embryos decreased glycosaminoglycan synthesis causing severe embryonic malformations because of a defective gastrulation process.  相似文献   

5.
Matrix metalloproteinases (MMPs) are a large family of extracellular or membrane-bound proteases. Their ability to cleave extracellular matrix (ECM) proteins has implicated a role in ECM remodeling to affect cell fate and behavior during development and in pathogenesis. We have shown previously that membrane-type 1 (MT1)-MMP [corrected] is coexpressed temporally and spatially with the MMP gelatinase A (GelA) in all cell types of the intestine and tail where GelA is expressed during Xenopus laevis metamorphosis, suggesting a cooperative role of these MMPs in development. Here, we show that Xenopus GelA and MT1-MMP interact with each other in vivo and that overexpression of MT1-MMP and GelA together in Xenopus embryos leads to the activation of pro-GelA. We further show that both MMPs are expressed during Xenopus embryogenesis, although MT1-MMP gene is expressed earlier than the GelA gene. To investigate whether the embryonic MMPs play a role in development, we have studied whether precocious expression of these MMPs alters development. Our results show that overexpression of both MMPs causes developmental abnormalities and embryonic death by a mechanism that requires the catalytic activity of the MMPs. More importantly, we show that coexpression of wild type MT1-MMP and GelA leads to a cooperative effect on embryonic development and that this cooperative effect is abolished when the catalytic activity of either MMP is eliminated through a point mutation in the catalytic domain. Thus, our studies support a cooperative role of these MMPs in embryonic development, likely through the activation of pro-GelA by MT1-MMP.  相似文献   

6.
7.
8.
Hyaluronan in morphogenesis   总被引:15,自引:0,他引:15  
Hyaluronan is a very large polysaccharide that is found in extracellular matrices, at the cell surface and inside cells. This review focuses on the functions of hyaluronan directly associated with the cell surface, where it is commonly present as the essential core of a highly hydrated pericellular matrix that contains several other components (hyaladherins) bound to hyaluronan. Three major molecular characteristics of hyaluronan contribute to its physiological functions: its unique hydrodynamic properties, its interactions with structural extracellular hyaladherins, and its instructive effects on cell signaling and behavior. Recent studies of hyaluronan-deficient mouse embryos illustrate the importance of each of these classes of function of hyaluronan. It is postulated that the morphogenetic effects of hyaluronan are due to its ability to act as a template for assembly of a multi-component, pericellular matrix as well as to its physical properties. This matrix would provide a hydrated environment in which cells are separated from structural barriers to morphogenetic changes and receive signals from hyaluronan itself and from associated factors.  相似文献   

9.
10.
Activin is a potent inducer of mesoderm in amphibian embryos. We previously reported that low concentrations of activin could induce the formation of blood cells from Xenopus explants (animal caps). Both hematopoietic and vascular endothelial cell lineages are believed to share a common precursor, termed hemangioblasts. In this study, we tried to induce differentiation of vascular endothelial cells in aggregates derived from Xenopus animal caps. Aggregates formed from cells that were co-treated with activin and angiopoietin-2 expressed the vascular endothelial markers, X-msr, Xtie2 and Xegfl7. However, none of these aggregates expressed the hematopoietic marker genes, globin alpha T3, alpha T5, alpha A or GATA-1. We used microarray analysis to compare the gene expression profiles of aggregates treated with activin alone or with activin and angiopoietin. The combination, but not activin alone, induced expression of vascular-related genes such as Xl-fli and VEGF. These results demonstrate that treatment of dissociated animal cap cells with activin and angiopoietin-2 can induce differentiation of endothelial cells, and provides a promising model system for the in vitro study of blood vessel induction in vertebrates.  相似文献   

11.
The development of the synovial joint cavity between the cartilage anlagen of the long bones is thought to be mediated by differential matrix synthesis at the developing articular surfaces. In addition, many studies have shown that removal of movement-induced mechanical stimuli from developing diarthrodial joints prevents cavity formation or produces a secondary fusion of previously cavitated joints. Herein, we describe an inductive influence of mechanical strain on hyaluronan metabolism and the expression of hyaluronan-binding proteins in cultured cells isolated from the articular surface of the distal tibial condyles of 18-day chick embryos. The effect of 10 min of mechanical strain on hyaluronan release into culture media, intracellular uridine diphospho-glucose dehydrogenase activity (an enzyme required for hyaluronan saccharide precursor production), cell surface hyaluronan-binding protein expression and HA synthase mRNA expression were analysed up to 24 h later. Six hours after the application of strain, there was a significant increase in the accumulation of hyaluronan released into tissue culture media by strained fibrocartilage cells compared with controls, an effect still detectable after 24 h. Strained cells also showed increased activity for uridine diphospho-glucose dehydrogenase and expressed higher levels of the hyaluronan-binding protein CD44 at 24 h. In addition, at 24 h mRNA for HA synthase 2 was expressed in all samples whereas mRNA for HA synthase 3 was only expressed in strained cells. These results further highlight the role for movement-induced stimuli in differential extracellular matrix metabolism during joint development and also show that strain may facilitate differential HA synthase gene expression.  相似文献   

12.
We have examined the pattern of expression of the Lewis group carbohydrate antigens during the development of African toad Xenopus laevis. One of these antigens, Lewis x (Le(x), also known as SSEA-1), was previously shown to be involved in cell-cell adhesion in early mouse embryos and teratocarcinoma stem cells. Recently another member of these antigens, sialyl-Le(x), was found to be one of the major ligands for the selectin family of cell-cell adhesion molecules. In order to study the role of carbohydrate-mediated cell adhesion during Xenopus development, we first studied the expression pattern of the Le(x). We found that Le(x)was not expressed in early embryos, started to be expressed at the tail bud stage in anterior regions of the body such as the cement gland or head skin, and was gradually showed more posterial expression at later stages. At tadpole stage, it was also expressed on specific cell bodies in brain, and in axon region in brain and neural retina. Antibodies against Le(x)blocked neurite outgrowth in the explant culture of tadpole brain. One of the candidates for Le(x)carrier protein in the tadpole brain is a 200 kDa glycoprotein detected by Western blotting. In adult tissues, it was expressed in brain, testis, and gut, but not in kidney, lung, spleen, ovary, or muscle. We also examined the expression patterns of other Lewis group antigens. Among them, sialyl-Le(x)was expressed on endothelial cells and on leukocytes, suggesting the possibility that it functions as a ligand for selectin in Xenopus.  相似文献   

13.
Overexpression of S-adenosylmethionine decarboxylase (SAMDC) mRNA in 1- and 2-cell stage Xenopus embryos induces cell autonomous dissociation at the late blastula stage and developmental arrest at the early gastrula stage. The induction of cell dissociation took place "punctually" at the late blastula stage in the SAMDC-overexpressing cells, irrespective of the stage of the microinjection of SAMDC mRNA. When we examined the cells undergoing the dissociation, we found that they were TUNEL-positive and contained fragmented nuclei with condensed chromatin and fragmented DNA. Furthermore, by injecting Xenopus Bcl-2 mRNA together with SAMDC mRNA, we showed that SAMDC-overexpressing embryos are rescued completely by Bcl-2 and becometadpoles. These results indicatethat cell dissociation induced by SAMDC overexpression is due to apoptotic cell death. Since the level of S-adenosylmethionine (SAM) is greatly reduced in SAMDC-overexpressing embryos and this induces inhibition of protein synthesis accompanied by the inhibition of DNA and RNA syntheses, we conclude that deficiency in SAM induced by SAMDC overexpression activates the maternal program of apoptosis in Xenopus embryos at the late blastula stage, but not before. We propose that this mechanism serves as a surveillance mechanism to check and eliminate cells physiologically damaged during the cleavage stage.  相似文献   

14.
Endothelial tip cells guide angiogenic sprouts by exploring the local environment for guidance cues such as vascular endothelial growth factor (VegfA). Here we present Flt1 (Vegf receptor 1) loss- and gain-of-function data in zebrafish showing that Flt1 regulates tip cell formation and arterial branching morphogenesis. Zebrafish embryos expressed soluble Flt1 (sFlt1) and membrane-bound Flt1 (mFlt1). In Tg(flt1(BAC):yfp) × Tg(kdrl:ras-cherry)(s916) embryos, flt1:yfp was expressed in tip, stalk and base cells of segmental artery sprouts and overlapped with kdrl:cherry expression in these domains. flt1 morphants showed increased tip cell numbers, enhanced angiogenic behavior and hyperbranching of segmental artery sprouts. The additional arterial branches developed into functional vessels carrying blood flow. In support of a functional role for the extracellular VEGF-binding domain of Flt1, overexpression of sflt1 or mflt1 rescued aberrant branching in flt1 morphants, and overexpression of sflt1 or mflt1 in controls resulted in short arterial sprouts with reduced numbers of filopodia. flt1 morphants showed reduced expression of Notch receptors and of the Notch downstream target efnb2a, and ectopic expression of flt4 in arteries, consistent with loss of Notch signaling. Conditional overexpression of the notch1a intracellular cleaved domain in flt1 morphants restored segmental artery patterning. The developing nervous system of the trunk contributed to the distribution of Flt1, and the loss of flt1 affected neurons. Thus, Flt1 acts in a Notch-dependent manner as a negative regulator of tip cell differentiation and branching. Flt1 distribution may be fine-tuned, involving interactions with the developing nervous system.  相似文献   

15.
16.
In order to gain further insight into IGF-1 receptor signaling in Xenopus laevis oocytes and embryos, we have undertaken the characterization of the adapter protein Shc and studied its implication in oocyte maturation induced after IGF-1 receptor activation, especially since expression of this molecule has been indirectly evidenced in Xenopus oocytes, eggs and embryos. We report herein the cloning from Xenopus postvitellogenic oocytes of a complementary DNA encoding a protein of 470 amino acids which shows the higher identity with the mammalian adaptor protein p52(ShcA). Western blot analysis using homologous antibodies evidenced a 60-kDa protein, p60(Xl)(Shc), that is predominantly expressed in oocytes and in early embryos. We also demonstrate that, like p60(Xl)(Shc), Grb2 and the guanine nucleotide exchange factor Sos are expressed in oocytes throughout vitellogenesis and in early embryos and that overexpression of a dominant-negative form of Grb2 specifically inhibits insulin-induced resumption of meiosis. We finally show that Grb2 binds to p60(Shc) in oocytes specifically upon insulin treatment. Altogether, these results suggest that Shc and Grb2-Sos are implicated in ras-dependent Xenopus oocyte maturation induced by insulin/IGF-1; they also indicate that inability of insulin/IGF-1 to activate the Ras-MAPK cascade in vitellogenic oocytes does not result from an insufficient expression level of Shc, Grb2 and Sos.  相似文献   

17.
18.
19.
Here reported is the developmental gene expression pattern of the three known vertebrate hyaluronan synthases (XHas1, XHas2 and XHas3) and a comparative analysis of their mRNAs spatio-temporal distribution during Xenopus laevis development. We found that while XHas2 shows a steady-state expression from gastrula to late tailbud stage, XHas1 is mainly present in the early phases of development while XHas3 is predominantly transcribed in tailbud embryos. XHas1, XHas2 and XHas3 show distinct tissue expression patterns. In particular, XHas1 is localized in ectodermal derivatives and in cranial neural crest cells, whereas XHas2 is mainly found in mesoderm-derived structures and in trunk neural crest cells. Moreover, the expression pattern of XHas2 overlaps that of MyoD in cells committed to a muscle fate. Unlike the other hyaluronan synthases, XHas3 mRNA distribution is very restricted. In particular, XHas3 is expressed in the otic vesicles and closely follows the inner ear development. In conclusion, XHas1, XHas2 and XHas3 mRNAs have distinct and never overlapping spatial expression domains, which would suggest that these three enzymes may play different roles during embryogenesis.  相似文献   

20.
Hyaluronan is a glycosaminoglycan of the extracellular matrix. In tumors and during chronic inflammatory diseases, hyaluronan is degraded to smaller fragments, which are known to stimulate endothelial cell differentiation. In this study, we have compared the molecular mechanisms through which hyaluronan dodecasaccharides (HA12), and the known angiogenic factor, fibroblast growth factor 2 (FGF-2), induce capillary endothelial cell sprouting in a three-dimensional collagen gel. The gene expression profiles of unstimulated and HA12- or FGF-2-stimulated endothelial cells were compared using a microarray analysis approach. The data revealed that both FGF-2 and HA12 promoted endothelial cell morphogenesis in a process depending on the expression of ornithine decarboxylase (Odc) and ornithine decarboxylase antizyme inhibitor (Oazi) genes. Among the genes selectively up-regulated in response to HA12 was the chemokine CXCL1/GRO1 gene. The notion that the induction of CXCL1/GRO1 is of importance for HA12-induced endothelial cell sprouting was supported by the fact that morphogenesis was inhibited by antibodies specifically neutralizing the CXCL1/GRO1 protein product. HA12-stimulated endothelial cell differentiation was exerted via binding to CD44 since it was inhibited by antibodies blocking CD44 function. Our data show that hyaluronan fragments and FGF-2 affect endothelial cell morphogenesis by the induction of overlapping but also by distinct sets of genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号