首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mao L  Wang JQ 《生理学报》2003,55(3):233-244
尽管传统概念长期认为成体哺乳动物中枢神经系统缺乏再生增殖能力,但近年来发现,在成体若干脑区内确实存在具有再生与分化能力的神经干或神经前体细胞。这些干细胞在正常倩况下仅表现较低的再生分化活动。不过,在神经退行性病变中,病灶区内的干细胞可被动员、激活,并以较高的速率分裂分化以及取代坏死的神经元或胶质细胞,达到自身原位修复的作用。许多神经生长和营养因子具有增强或抑制干细胞分裂秋或分化的能力,在神经退行性病变中,病灶区内外成熟或新生细胞即可通过表达这些因子,有效调节干细胞的活动和干细胞主导的修复过程。总之,成体神经干细胞可以积极参与急性或慢性神经组织损伤的修复,通过再生来提供新的神经元以及其他必需的细胞,以促进功能的恢复。  相似文献   

2.
We studied the development of stem/progenitor cells of the human brain transplanted in the adult rat brain after expansion in an in vitrotissue culture. It was preliminarily shown by the immunological methods that the stem cells grown in a medium with growth factors formed neurospheres, which were heterogenous and contained both stem and progenitor cells of the human brain. The cells were implanted in the hippocampus, striatum, or lateral ventricle of the rat brain as a suspension or aggregates (neurospheres) and their behavior and differentiation were studies within 10, 20, and 30 days using the morphological and immunochemical methods. The cultured cells of the human brain continued their development in the rat brain, migrated, and formed neurons and astrocytes. The white mater fibers, lateral ventricle wall, and perivascular spaces served as the main pathways of migration. The neuronal differentiation was shown by staining with antibodies to -tubulin III, neurofilaments-70, and calbindin. Some growing nerve cells had long processes with growth cones. At the same time, some transplanted cells retained the undifferentiated state within one month after the implantation, as shown by the vimentin expression.  相似文献   

3.
脑肿瘤干细胞   总被引:3,自引:0,他引:3  
脑肿瘤尤其是恶性脑胶质瘤,由于生长及复发快,预后极差,所以找到胶质瘤复发的根源,提高胶质瘤病人的存活率,已成为国内外的肿瘤生物学工作者和临床医学工作者亟待解决的难题。近年来肿瘤干细胞概念的提出及脑肿瘤干细胞的分离及鉴定,为脑肿瘤的研究提供了新的切入点,同时可成为肿瘤治疗新的靶标,为根治脑肿瘤带来了光明的前景。简要综述了脑肿瘤干细胞无限增殖、自我更新、多分化潜能的生物学特性,脑肿瘤干细胞的起源以及与脑肿瘤相关机制方面的研究进展,从而为今后脑肿瘤早期诊断、治疗以及以此为靶标的药物开发提供新的思路和方向。  相似文献   

4.

Background

Host malignant stromal cells induced by glioma stem/progenitor cells were revealed to be more radiation-resistant than the glioma stem/progenitor cells themselves after malignant transformation in nude mice. However, the mechanism underlying this phenomenon remains unclear.

Methods

Malignant stromal cells induced by glioma stem/progenitor cell 2 (GSC-induced host brain tumor cells, ihBTC2) were isolated and identified from the double color-coded orthotopic glioma nude mouse model. The survival fraction at 2 Gy (SF2) was used to evaluate the radiation resistance of ihBTC2, the human glioma stem/progenitor cell line SU3 and its radiation-resistant sub-strain SU3-5R and the rat C6 glioma cell line. The mRNA of Notch 1 and Hes1 from ihBTC2 cells were detected using qPCR before and after 4 Gy radiation. The expression of the Notch 1, pAkt and Bcl-2 proteins were investigated by Western blot. To confirm the role of the Notch pathway in the radiation resistance of ihBTC2, Notch signaling blocker gamma secretase inhibitors (GSIs) were used.

Results

The ihBTC2 cells had malignant phenotypes, such as infinite proliferation, hyperpentaploid karyotype, tumorigenesis in nude mice and expression of protein markers of oligodendroglia cells. The SF2 of ihBTC2 cells was significantly higher than that of any other cell line (P<0.05, n = 3). The expression of Notch 1 and Hes1 mRNAs from ihBTC2 cells was significantly increased after radiation. Moreover, the Notch 1, pAkt and Bcl-2 proteins were significantly increased after radiation (P<0.05, n = 3). Inhibition of Notch signaling markedly enhanced the radiosensitivity of ihBTC2 cells.

Conclusions

In an orthotopic glioma model, the malignant transformation of host stromal cells was induced by glioma stem/progenitor cells. IhBTC2 cells are more radiation-resistant than the glioma stem/progenitor cells, which may be mediated by activation of the Notch signaling pathway.  相似文献   

5.
The derivation of hepatic progenitor cells from human embryonic stem (hES) cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell–derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.  相似文献   

6.
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIM SA/SA ) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIM SA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIM SA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIM SA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.  相似文献   

7.
The neural stem cell niche defines a zone in which stem cells are retained after embryonic development for the production of new cells of the nervous system. This continual supply of new neurons and glia then provides the postnatal and adult brain with an added capacity for cellular plasticity, albeit one that is restricted to a few specific zones within the brain. Critical to the maintenance of the stem cell niche are microenvironmental cues and cell-cell interactions that act to balance stem cell quiescence with proliferation and to direct neurogenesis versus gliogenesis lineage decisions. Ultimately, based on the location of the niche, stem cells of the adult brain support regeneration in the dentate gyrus of the hippocampus and the olfactory bulb through neuron replacement. Here, we provide a summary of the current understanding of the organization and control mechanisms of the neural stem cell niche.  相似文献   

8.

Background

The adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair.

Methodology/Principal Findings

We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS). In our search for motile progenitor cells, we uncovered a population of motile βIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr). This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFrlow neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-α), an EGFr-selective agonist. Indeed, acute exposure to TGF-α decreased the percentage of motile cells by approximately 40%.

Conclusions/Significance

In summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ.  相似文献   

9.
10.

Background

Progenitor cells isolated from adult brain tissue are important tools for experimental studies of remyelination. Cells harvested from neurogenic regions in the adult brain such as the subependymal zone have demonstrated remyelination potential. Multipotent cells from the progenitor fraction have been isolated from the adult olfactory bulb (OB) but their potential to remyelinate has not been studied.

Methodology/Principal Findings

We used the buoyant density gradient centrifugation method to isolate the progenitor fraction and harvest self-renewing multipotent neural cells grown in monolayers from the adult green-fluorescent protein (GFP) transgenic rat OB. OB tissue was mechanically and chemically dissociated and the resultant cell suspension fractionated on a Percoll gradient. The progenitor fraction was isolated and these cells were plated in growth media with serum for 24 hrs. Cells were then propagated in N2 supplemented serum-free media containing b-FGF. Cells at passage 4 (P4) were introduced into a demyelinated spinal cord lesion. The GFP+ cells survived and integrated into the lesion, and extensive remyelination was observed in plastic sections. Immunohistochemistry revealed GFP+ cells in the spinal cord to be glial fibrillary acidic protein (GFAP), neuronal nuclei (NeuN), and neurofilament negative. The GFP+ cells were found among primarily P0+ myelin profiles, although some myelin basic protein (MBP) profiles were present. Immuno-electron microscopy for GFP revealed GFP+ cell bodies adjacent to and surrounding peripheral-type myelin rings.

Conclusions/Significance

We report that neural cells from the progenitor fraction of the adult rat OB grown in monolayers can be expanded for several passages in culture and that upon transplantation into a demyelinated spinal cord lesion provide extensive remyelination without ectopic neuronal differentiation.  相似文献   

11.
With recent findings on the role of reprogramming factors on stem cells, in vitro screening assays for studying (de)-differentiation is of great interest. We developed a miniaturized stem cell screening chip that is easily accessible and provides means of rapidly studying thousands of individual stem/progenitor cell samples, using low reagent volumes. For example, screening of 700,000 substances would take less than two days, using this platform combined with a conventional bio-imaging system. The microwell chip has standard slide format and consists of 672 wells in total. Each well holds 500 nl, a volume small enough to drastically decrease reagent costs but large enough to allow utilization of standard laboratory equipment. Results presented here include weeklong culturing and differentiation assays of mouse embryonic stem cells, mouse adult neural stem cells, and human embryonic stem cells. The possibility to either maintain the cells as stem/progenitor cells or to study cell differentiation of stem/progenitor cells over time is demonstrated. Clonality is critical for stem cell research, and was accomplished in the microwell chips by isolation and clonal analysis of single mouse embryonic stem cells using flow cytometric cell-sorting. Protocols for practical handling of the microwell chips are presented, describing a rapid and user-friendly method for the simultaneous study of thousands of stem cell cultures in small microwells. This microwell chip has high potential for a wide range of applications, for example directed differentiation assays and screening of reprogramming factors, opening up considerable opportunities in the stem cell field.  相似文献   

12.

Background

Neurons and glial cells can be efficiently induced from mouse embryonic stem (ES) cells in a conditioned medium collected from rat primary-cultured astrocytes (P-ACM). However, the use of rodent primary cells for clinical applications may be hampered by limited supply and risk of contamination with xeno-proteins.

Methodology/Principal Findings

We have developed an alternative method for unimpeded production of human neurons under xeno-free conditions. Initially, neural stem cells in sphere-like clusters were induced from human ES (hES) cells after being cultured in P-ACM under free-floating conditions. The resultant neural stem cells could circumferentially proliferate under subsequent adhesive culture, and selectively differentiate into neurons or astrocytes by changing the medium to P-ACM or G5, respectively. These hES cell-derived neurons and astrocytes could procure functions similar to those of primary cells. Interestingly, a conditioned medium obtained from the hES cell-derived astrocytes (ES-ACM) could successfully be used to substitute P-ACM for induction of neurons. Neurons made by this method could survive in mice brain after xeno-transplantation.

Conclusion/Significance

By inducing astrocytes from hES cells in a chemically defined medium, we could produce human neurons without the use of P-ACM. This self-serving method provides an unlimited source of human neural cells and may facilitate clinical applications of hES cells for neurological diseases.  相似文献   

13.
The polycomb gene Bmi-1 is required for the self-renewal of stem cells from diverse tissues, including the central nervous system (CNS). Bmi-1 expression is elevated in most human gliomas, irrespective of grade, raising the question of whether Bmi-1 over-expression is sufficient to promote self-renewal or tumorigenesis by CNS stem/progenitor cells. To test this we generated Nestin-Bmi-1-GFP transgenic mice. Analysis of two independent lines with expression in the fetal and adult CNS demonstrated that transgenic neural stem cells formed larger colonies, more self-renewing divisions, and more neurons in culture. However, in vivo, Bmi-1 over-expression had little effect on CNS stem cell frequency, subventricular zone proliferation, olfactory bulb neurogenesis, or neurogenesis/gliogenesis during development. Bmi-1 transgenic mice were born with enlarged lateral ventricles and a minority developed idiopathic hydrocephalus as adults, but none of the transgenic mice formed detectable CNS tumors, even when aged. The more pronounced effects of Bmi-1 over-expression in culture were largely attributable to the attenuated induction of p16Ink4a and p19Arf in culture, proteins that are generally not expressed by neural stem/progenitor cells in young mice in vivo. Bmi-1 over-expression therefore has more pronounced effects in culture and does not appear to be sufficient to induce tumorigenesis in vivo.  相似文献   

14.
15.
The songbird forebrain continues to generate neurons in adulthood, from precursor cells located in the ependymal/subependymal zone (SZ) over the mediocaudal neostriatum. Precursor mitosis is followed by migration of neuronal daughter cells into the underlying forebrain, along radial fibers derived from the SZ. To define the ontogeny of both the new neurons and their radial guide cells, we employed retroviral insertion of the lacZ gene into neostriatal SZ precursor cells derived from postnatal and adult songbirds. We found that single SZ cells generate both neurons and substrate glia in vitro, and in an analogous fashion, both neurons and radial cells in vivo. This suggests that newly generated neurons and radial cells of the adult avian brain derive from a common pluripotential progenitor. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
In the adult mammalian brain, neural stem cells in the subventricular zone continuously generate new neurons for the olfactory bulb. Cell fate commitment in these adult neural stem cells is regulated by cell fate-determining proteins. Here, we show that the cell fate-determinant TRIM32 is upregulated during differentiation of adult neural stem cells into olfactory bulb neurons. We further demonstrate that TRIM32 is necessary for the correct induction of neuronal differentiation in these cells. In the absence of TRIM32, neuroblasts differentiate slower and show gene expression profiles that are characteristic of immature cells. Interestingly, TRIM32 deficiency induces more neural progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated olfactory bulb neurons of TRIM32 knockout mice. These results highlight the function of the cell fate-determinant TRIM32 for a balanced activity of the adult neurogenesis process.  相似文献   

17.
Primary malignant brain cancer, one of the most deadly diseases, has a high rate of recurrence after treatment. Studies in the past several years have led to the hypothesis that the root of the recurrence may be brain tumor stem cells (BTSCs), stem-like subpopulation of cells that are responsible for propagating the tumor. Current treatments combining surgery and chemoradiotherapy could not eliminate BTSCs because these cells are highly infiltrative and possess several properties that can reduce the damages caused by radiation or anti-cancer drugs. BTSCs are similar to NSCs in molecular marker expression and multi-lineage differentiation potential. Genetic analyses of Drosophila CNS neoplasia, mouse glioma models, and human glioma tissues have revealed a link between increased NSC self-renewal and brain tumorigenesis. Furthermore, data from various rodent models of malignant brain tumors have provided compelling evidence that multipotent NSCs and lineage-restricted neural progenitor cells (NPCs) could be the cell origin of brain tumors. Thus, the first event of brain tumorigenesis might be the occurrence of oncogenic mutations in the stem cell self-renewal pathway in an NSC or NPC. These mutations convert the NSC or NPC to a BTSC, which then initiates and sustains the growth of the tumor. The self-renewal of BTSCs is controlled by several evolutionarily conserved signaling pathways and requires an intact vascular niche. Targeting these pathways and the vascular niche could be a principle in novel brain tumor therapies aimed to eliminate BTSCs.  相似文献   

18.
Limbal Stem Cells in Health and Disease   总被引:7,自引:0,他引:7  
Stem cells are present in all self-reviewing tissues and have unique properties. The ocular surface is made up of two distinct types of epithelial cells, constituting the conjunctival and the corneal epithelia. These epithelia are stratified, squamous and non-keratinized. Although anatomically continuous with each other at the corneoscleral limbus, the two cell phenotypes represent quite distinct subpopulations. The stem cells for the cornea are located at the limbus. The microenvironment of the limbus is considered to be important in maintaining stemness of the stem cells. They also act as a barrier to conjunctival epithelial cells and prevent them from migrating on to the corneal surface. In certain pathologic conditions, however, the limbal stem cells may be destroyed partially or completely resulting in varying degrees of stem cell deficiency with its characteristic clinical features. These include conjunctivalization of the cornea with vascularization, appearance of goblet cells, and an irregular and unstable epithelium. The stem cell deficiency can be managed with auto or allotransplantation of these cells. With the latter option, systemic immunosuppression is required. The stem cells can be expanded ex vivo on a processed human amniotic membrane and transplanted back to ocular surface with stem cell deficiency without the need of immunosuppression.  相似文献   

19.
Liu WG  Chen Y  Li B  Lu GQ  Chen SD 《Neurochemical research》2004,29(12):2207-2214
Neural stem cells (NSCs) are currently considered very hopeful candidates for cell replacement therapy in neurodegenerative pathologies such as Parkinsons disease (PD), but like embryonic neural tissue transplantation, levodopa medication may still be required to improve symptoms even after cell transplantation. The issues of whether levodopa induces cytotoxicity and apoptosis of NSCs following transplantation, as well as the means to prevent these processes from occurring remain to be elucidated. In this study, the possible cytotoxicity of levodopa at different doses on C17.2 neural stem cells and subsequent neuroprotection by pergolide were investigated. The cell viability was determined by the MTT assay. Cell proliferation was assayed by BrdU labeling, while apoptosis was detected by Annexin-V-FLUOS staining and flow cytometry. Levels of p53, Bax, Bcl-2, NFkB, cytochrome c, caspase-3 as well as cleavage of caspase-3 were measured by western blotting. We found levodopa induced a concentration- and time-dependent decrease in cell viability and proliferation. Apoptotic cells were observed at different stages, specifically 12 and 24 h following exposure to levodopa (200 M). Elevated p53, Bax, cytochrome c, caspase-3 and active fragments of caspase-3 protein were observed in the cells exposed to levodopa. These alterations were partly inhibited by pergolide, a dopamine receptor agonist, while Bcl-2 and NFkB p65 levels remained constant at the various time-points in all the groups examined. These observations indicate that levodopa at high concentrations (200 M) was neurotoxic to C17.2 neural stem cells via inhibition of DNA synthesis and cell proliferation. Activation of the mitochondria-dependent pathway and caspase-3 protease may contribute to the mechanism by which levodopa induces apoptosis. Pergolide, an anti-Parkinson drug, has a neuroprotective effect and partly blocks levodopa-induced cytotoxicity.  相似文献   

20.
Isolation and cultivation of stem and progenitor cells of human embryos and fetuses at the age of 7–12 weeks of gestation have been described. The embryonic cells of human brain formed neurospheres with heterogenous composition. Cell differentiation took place not only in the presence of serum or as a result of attachment of neurosphere to a sublayer, but also in floating neurospheres in the presence of mitogens. In most neurospheres, the nestin-immunopositive cells were located near the surface while the cells stained for -tubulin III and glial fibrillar acid protein, as compact groups inside the neurospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号