首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The purpose of this study was to investigate the effect of a thiamin derivative, thiamin tetrahydrofurfuryl disulfide (TTFD), on oxygen uptake (˙VO2), lactate accumulation and cycling performance during exercise to exhaustion. Using a randomized, double-blind, cross-over design with a 10-day washout between trials, 14 subjects ingested either 1 g · day−1 of TTFD or a placebo (PL) for 4 days. On day 3, subjects performed a progressive exercise test to exhaustion on a cycle ergometer for the determination of ˙VO2submax, ˙VO2peak, lactate concentration ([La ]), lactate threshold (ThLa) and heart rate ( f c). On day 4, subjects performed a maximal 2000-m time trial on a cycle ergometer. A one-way analysis of variance (ANOVA) with repeated measures was used to determine significant differences between trials. There were no significant differences detected between trials for serial measures of ˙VO2submax, [La] or f c. Likewise, ˙VO2peak [PL 4.06 (0.19) TTFD 4.12 (0.19) l · min−1, P = 0.83], ThLa [PL 2.47 (0.17), TTFD 2.43 (0.16) l · min−1, P = 0.86] and 2000-m performance time [PL 204.5 (5.5), TTFD 200.9 (4.3) s, P = 0.61] were not significantly different between trials. The results of this study suggest that thiamin derivative supplementation does not influence high-intensity exercise performance. Accepted: 19 December 1996  相似文献   

2.
The lugworm Arenicola marina is a typical inhabitant of intertidal flats. In its L-shaped burrow the animal is exposed to varying concentrations of O2 and toxic sulfide depending on the tides. The lugworm is able to detoxify sulfide through its oxidation to thiosulfate. When exposed to declining O2 tensions Arenicola marina reacted as an oxyconformer. In the presence of 25 μmol · l−1 sulfide the respiration was not affected. In contrast, the lugworm consumed significantly less O2 at any Po2 in the presence of 200 μmol · l−1 sulfide. Without sulfide anaerobic metabolism started at a Po2 of approximatedly 10 kPa. Even at high O2 tensions animals exposed to sulfide produced significantly more anaerobic metabolites compared with the controls. Accordingly the critical value PcM, the ambient Po2 below which anaerobic metabolism starts, was shifted towards normoxia. Since O2 supply was sufficient for aerobic metabolism, anaerobiosis was induced by sulfide. An influx of sulfide was observed at 25 as well as at 200 μmol · l−1 sulfide. The main product of sulfide detoxification in the lugworm was thiosulfate. Its synthesis increased with ambient Po2 and depended on the sulfide concentration. Sulfide and thiosulfate were detected in the coelomic fluid, the blood, and the body wall of Arenicola marina. Only about 2% of the ambient O2 was used for sulfide detoxification at 25 μmol · l−1 sulfide and about 50% at 200 μmol · l−1 sulfide, respectively. Even at the low sulfide concentration Arenicola marina's capacity to detoxify sulfide was too low to maintain a complete aerobic metabolism. Accepted: 19 February 1997  相似文献   

3.
Unidirectional flux rates of Ca2+ across gastrointestinal tissues from sheep and goats were measured in vitro by applying the Ussing-chamber technique. Except for the sheep duodenum, mucosal to serosal Ca2+ flux rates (J ms) exceeded respective flux rates in the opposite direction (J sm) in both species and in all segments of the intestinal tract. This resulted in net Ca2+ flux rates␣(J net = J ms − J sm) ranging between −2 and 9 nmol · cm−2 · h−1 in sheep and between 10 and 15 nmol cm−2 · h−1 in goats. In sheep, only J net in jejunum, and in goats, J netin duodenum and jejunum were significantly different from zero. Using sheep rumen wall epithelia, significant J net of Ca2+ of around 5 nmol · cm−2 · h−1 could be detected. Since the experiments were carried out in the absence of an electrochemical gradient, significant net Ca2+ absorption clearly indicates the presence of active mechanisms for Ca2+ transport. Dietary Ca depletion caused increased calcitriol plasma concentrations and induced significant stimulations of net Ca2+ absorption in goat rumen. J net of Ca2+ across goat rumen epithelia was significantly reduced by 1 mmol · l −1 verapamil in the mucosal buffer solution. In conclusion, there is clear evidence for the rumen as a main site for active Ca2+ absorption in small ruminants. Stimulation of active Ca2+ absorption by increased plasma calcitriol levels and inhibition by mucosal verapamil suggest mechanistic and regulatory similarities to active Ca2+ transport as described for the upper small intestines of monogastric species. Accepted: 31 July 1996  相似文献   

4.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

5.
We tested the hypothesis that elevated CO2 would stimulate proportionally higher photosynthesis in the lower crown of Populus trees due to less N retranslocation, compared to tree crowns in ambient CO2. Such a response could increase belowground C allocation, particularly in trees with an indeterminate growth pattern such as Populus tremuloides. Rooted cuttings of P. tremuloides were grown in ambient and twice ambient (elevated) CO2 and in low and high soil N availability (89 ± 7 and 333 ± 16 ng N g−1 day−1 net mineralization, respectively) for 95 days using open-top chambers and open-bottom root boxes. Elevated CO2 resulted in significantly higher maximum leaf photosynthesis (A max) at both soil N levels. A max was higher at high N than at low N soil in elevated, but not ambient CO2. Photosynthetic N use efficiency was higher at elevated than ambient CO2 in both soil types. Elevated CO2 resulted in proportionally higher whole leaf A in the lower three-quarters to one-half of the crown for both soil types. At elevated CO2 and high N availability, lower crown leaves had significantly lower ratios of carboxylation capacity to electron transport capacity (V cmax/J max) than at ambient CO2 and/or low N availability. From the top to the bottom of the tree crowns, V cmax/J max increased in ambient CO2, but it decreased in elevated CO2 indicating a greater relative investment of N into light harvesting for the lower crown. Only the mid-crown leaves at both N levels exhibited photosynthetic down regulation to elevated CO2. Stem biomass segments (consisting of three nodes and internodes) were compared to the total A leaf for each segment. This analysis indicated that increased A leaf at elevated CO2 did not result in a proportional increase in local stem segment mass, suggesting that C allocation to sinks other than the local stem segment increased disproportionally. Since C allocated to roots in young Populus trees is primarily assimilated by leaves in the lower crown, the results of this study suggest a mechanism by which C allocation to roots in young trees may increase in elevated CO2. Received: 12 August 1996 / Accepted: 12 November 1996  相似文献   

6.
Phosphorus magnetic resonance spectroscopy (31P-MRS) was used to investigate the influence of maximal aerobic power (˙VO 2max) on the recovery of human calf muscle from high-intensity exercise. The (˙VOO2max) of 21 males was measured during treadmill exercise and subjects were assigned to either a low-aerobic-power (LAP) group (n = 10) or a high-aerobic-power (HAP) group (n = 11). Mean (SE) ˙VO 2max of the groups were 46.6 (1.1) and 64.4 (1.4) ml · kg−1 · min−1, respectively. A calf ergometry work capacity test was used to assign the same relative exercise intensity to each subject for the MRS protocol. At least 48 h later, subjects performed the rest (4 min), exercise (2 min) and recovery (10 min) protocol in a 1.5 T MRS scanner. The relative concentration of phosphocreatine (PCr) was measured throughout the protocol and intracellular pH (pHi) was determined from the chemical shift between inorganic phospate (Pi) and PCr. End-exercise PCr levels were 27 (3.4) and 25 (3.5)% of resting levels for LAP and HAP respectively. Mean resting pHi was 7.07 for both groups, and following exercise it fell to 6.45 (0.04) for HAP and 6.38 (0.04) for LAP. Analysis of data using non-linear regression models showed no differences in the rate of either PCr or pHi recovery. The results suggest that ˙VO2max is a poor predictor of metabolic recovery rate from high-intensity exercise. Differences in recovery rate observed between individuals with similar ˙VO2max imply that other factors influence recovery. Accepted: 17 December 1996  相似文献   

7.
To study the physiological responses induced by immersing in cold water various areas of the upper limb, 20 subjects immersed either the index finger (T1), hand (T2) or forearm and hand (T3) for 30 min in 5°C water followed by a 15-min recovery period. Skin temperature of the index finger, skin blood flow (Qsk) measured by laser Doppler flowmetry, as well as heart rate (HR) and mean arterial blood pressure (ˉBPa) were all monitored during the test. Cutaneous vascular conductance (CVC) was calculated as Qsk / ˉBPa. Cold induced vasodilatation (CIVD) indices were calculated from index finger skin temperature and CVC time courses. The results showed that no differences in temperature, CVC or cardiovascular changes were observed between T2 and T3. During T1, CIVD appeared earlier compared to T2 and T3 [5.90 (SEM 0.32) min in T1 vs 7.95 (SEM 0.86) min in T2 and 9.26 (SEM 0.78) min in T3, P < 0.01]. The HR was unchanged in T1 whereas it increased significantly at the beginning of T2 and T3 [+13 (SEM 2) beats · min−1 in T2 and +15 (SEM 3) beats · min−1 in T3, P < 0.01] and then decreased at the end of the immersion [−12 (SEM 3) beats · min−1 in T2, and −15 (SEM 3) beats · min−1 in T3, P < 0.01]. Moreover, ˉBPaincreased at the beginning of T1 but was lower than in T2 and T3 [+9.3 (SEM 2.5) mmHg in T1, P < 0.05;  +20.6 (SEM 2.6) mmHg and 26.5 (SEM 2.8) mmHg in T2 and T3, respectively, P < 0.01]. The rewarming during recovery was faster and higher in T1 compared to T2 and T3. These results showed that general and local physiological responses observed during an upper limb cold water test differed according to the area immersed. Index finger cooling led to earlier and faster CIVD without significant cardiovascular changes, whereas hand or forearm immersion led to a delayed and slower CIVD with a bradycardia at the end of the test. Accepted: 26 November 1996  相似文献   

8.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

9.
Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms−1 ranged from 1265 ± 208 μs (P1, N = 18) to 4802 ± 441 μs (N4, N = 13). Amplitudes ranged from 3.72 ± 1.51 μV (P1/N1, N = 18) to 1.49 ± 0.77 μV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from −38.7 ± 7.3 μs dB−1 (P1, N = 18) to −71.6 ± 21.9 μs dB−1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 ± 0.08 μV dB−1 (P1/N1, N = 18) to 0.07 ± 0.04 μV dB−1 (P3/N3, N = 11). The mean response threshold across all animals was −21.83 ± 3.34 dB re: 1.0 g ms−1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail. Accepted: 18 January 1997  相似文献   

10.
The heat increment of feeding (HIF), a transient postprandial increase in metabolic rate, is the energy cost of processing a meal. We measured HIF in house wren chicks (Troglodytes aedon) ranging in mass from 1.6 to 10.3 g. This mass range (age 2–10 days) spanned a transition from blind, naked, ectothermic chicks through alert, endothermic birds with nearly complete feathering. We fed chicks crickets (2.7–10% of chick body mass) and determined HIF from continuous measurements of oxygen consumption rate (O2) before and after meals. At warm ambient temperatures (T a) of 33–36 °C, the magnitude of HIF (in ml O2 or joules) was linearly related to meal mass and was not affected by chick mass. HIF accounted for 6.3% of ingested energy, which is within the range of results for other carnivorous vertebrates. The duration of HIF was inversely related to chick mass; 10-g chicks processed a standard meal approximately twice as fast as 2-g chicks. HIF duration increased with increasing meal mass. The peak O2 during HIF, expressed as the factorial increase above resting metabolism, was independent of body mass and meal mass. In large, endothermic chicks ( > 8 g), HIF substituted for thermoregulatory heat production at low T a. Accepted: 11 December 1996  相似文献   

11.
We examined the effects of climate and allocation patterns on stem respiration in ponderosa pine (Pinus ponderosa) growing on identical substrate in the cool, moist Sierra Nevada mountains and the warm, dry, Great Basin Desert. These environments are representative of current climatic conditions and those predicted to accompany a doubling of atmospheric CO2, respectively, throughout the range of many western north American conifers. A previous study found that trees growing in the desert allocate proportionally more biomass to sapwood and less to leaf area than montane trees. We tested the hypothesis that respiration rates of sapwood are lower in desert trees than in montane trees due to reduced stem maintenance respiration (physiological acclimation) or reduced construction cost of stem tissue (structural acclimation). Maintenance respiration per unit sapwood volume at 15°C did not differ between populations (desert: 6.39 ± 1.14 SE μmol m−3 s−1, montane: 6.54 ± 1.13 SE μmol m−3 s−1, P = 0.71) and declined with increasing stem diameter (P = 0.001). The temperature coefficient of respiration (Q 10) varied seasonally within both environments (P = 0.05). Construction cost of stem sapwood was the same in both environments (desert: 1.46 ± 0.009 SE g glucose g−1 sapwood, montane: 1.48 ± 0.009 SE glucose g−1 sapwood, P = 0.14). Annual construction respiration calculated from construction cost, percent carbon and relative growth rate was greater in montane populations due to higher growth rates. These data provide no evidence of respiratory acclimation by desert trees. Estimated yearly stem maintenance respiration was greater in large desert trees than in large montane trees because of higher temperatures in the desert and because of increased allocation of biomass to sapwood. By analogy, these data suggest that under predicted increases in temperature and aridity, potential increases in aboveground carbon gain due to enhanced photosynthetic rates may be partially offset by increases in maintenance respiration in large trees growing in CO2-enriched atmospheres. Received: 4 November 1996 / Accepted: 23 January 1997  相似文献   

12.
The effect of a 3-week exercise programme on performance and economy of walking was analysed in 16 male patients with chronic heart failure [mean age 51.8 (SD 6.9) years, height 174.9 (SD 6.3) cm, body mass 75.3 (SD 11.5) kg, ejection fraction 20.8 (SD 5.0)%]. They were submitted to a cardiopulmonary exercise test on a cycle ergometer and a 6-min walking test on a treadmill before and after the period of exercise training. The training programme consisted of interval cycle (five times a week for 15 min), and treadmill ergometer training (three times a week for 10 min) at approximately 70% cycling peak oxygen uptake (O2peak) and supplementary exercises (three times a week for 20 min). Compared to the pre values cycling O2peak [11.9 (SD 2.9) vs 14.0 (SD 2.3) ml ·  kg–1 · min–1], maximal self paced walking speed [0.68 (SD 0.33) vs 1.16 (SD 0.30) m · s–1], and net walking power [2.16 (SD 0.89) vs 2.73 (SD 0.91) W · kg–1] had increased (P < 0.01) while net energy cost [3.31 (SD 0.66) vs 2.33 (SD 0.38) J · kg–1 ·  m–1] had decreased (P < 0.001) after the training period. Approximately 42% of the increase of walking speed resulted from a higher walking power output, whereas approximately 58% corresponded to a positive effect on walking economy. The improvement in walking economy was a function of an increase in walking velocity itself and a result of a more efficient walking technique. These results would indicate that in patients with marked exercise intolerance, adequate exercise training programmes could contribute to favourable metabolic changes with positive effects on the economy of motion. Accepted: 29 August 1996  相似文献   

13.
The kinetics of the torque-velocity (T-ω) relationship after aerobic exercise was studied to assess the effect of fatigue on the contractile properties of muscle. A group of 13 subjects exercised until fatigued on a cycle ergometer, at an intensity which corresponded to 60% of their maximal aerobic power for 50 min (MAP60%); ten subjects exercised until fatigued at 80% of their maximal aerobic power for 15 min (MAP80%). Of the subjects 7 exercised at both intensities with at least a 1-week interval between sessions. Pedalling rate was set at 60 rpm. The T-ω relationship was determined from the velocity data collected during all-out sprints against a 19 N · m braking torque on the same ergometer, according to a method proposed previously. Maximal theoretical velocity (ω0) and maximal theoretical torque (T 0) were estimated by extrapolation of the linear T-ω relationship. Maximal power (P max) was calculated from the values of T 0 and ω0 (P max = 0.25 ω0T 0). The T-ω relationships were determined before, immediately after and 5 and 10 min after the aerobic exercise. The kinetics of ω0, T 0 and P max was assumed to express the effects of fatigue on the muscle contractile properties (maximal shortening velocity, maximal muscle strength and maximal power). Immediately after exercise at MAP60% a 7.8% decrease in T 0 and 8.8% decrease in P max was seen while the decrease in ω0 was nonsignificant, which suggested that P max decreased in the main because of a loss in maximal muscle strength. In contrast, MAP80% induced a 8.1% decrease in ω0 and 12.8% decrease in P max while the decrease in T 0 was nonsignificant, which suggested that the main cause of the decrease in P max was probably a slowing of maximal shortening velocity. The short recovery time of the T-ω relationship suggests that the causes of the decrease of torque and velocity are processes which recover rapidly. Accepted: 25 November 1996  相似文献   

14.
In the Swiss Prealps Entomobrya nivalis hibernates in an inactive state, hidden under bark flakes on spruce. For freeze avoidance it relies on thermal hysteresis proteins (THPs) and polyols (mainly ribitol, with small amounts arabitol and threitol). Polyols are present only during the inactive state, THPs additionally protect during the transition phase in spring and autumn, when animals are still active but frosts may occur. Peak values were recorded in February/March for THPs (3.5 °C hysteresis between melting and freezing point) and for polyols (26 μg mg−1 FW; hemolymph osmolality 680 mosmol l−1). E. nivalis is able to control its hemolymph osmolality independently of body water content. Mean osmolality in summer was 350– 440 mosmol l−1, in winter it was elevated to 650 mosmol l−1, due to a synthesis mainly of ribitol. Body water content varied between 1.8 and 3.3 mg H2O mg−1 DW, depending on humidity conditions. Experiments on triggering of antifreeze synthesis showed the action of temperature and photoperiod as cues, but there was also evidence for an endogenous rhythm. No clear correlation between antifreeze concentration and supercooling ability could be established, suggesting that gut content or other parameters also play an inportant role. Accepted: 18 November 1995  相似文献   

15.
In order to examine the influence of differences in food conditions on gut characteristics in Porcellio scaber, pH-manipulated and microbially inoculated leaf litter from three different tree species were offered. Microbial activity was clearly influenced by the pH levels of the leaves. Analyses of the pH levels in the gut indicated the ability of P. scaber to buffer the pH value in the intestinal tract to about 5.5–6.0 in the anterior hindgut, and to about 6.0–6.5 in the posterior hindgut. The pH levels of the gut sections remained in this range, within a range of food pH from 4.0 to 7.5, no matter what kind of leaves the animals were fed. Homeostatic responses to changes in food pH guarantee optimized digestion of leaf litter. However, when the pH level of the litter dropped below 3.5, P. scaber was not able to maintain the pH conditions in the gut. Furthermore, microorganisms colonizing the litter biased the pH level in the anterior hindgut where digestive processes mainly take place. These results indicate a decline of litter quality with regard to the nutrition of terrestrial isopods, caused by acidification and consequently reduced microbial activity. Accepted: 19 July 1997  相似文献   

16.
In this study we measured growth and milk intake and calculated energy intake and its allocation into metabolism and stored tissue for hooded seal (Cystophora cristata) pups. In addition, we measured mass loss, change in body composition and metabolic rate during the first days of the postweaning fast. The mean body mass of the hooded seal pups (n = 5) at the start of the experiments, when they were new-born, was 24.3 ± 1.3 kg (SD). They gained an average of 5.9 ± 1.1. kg · day−1 of which 19% was water, 76% fat and 5% protein. This corresponds to an average daily energy deposition of 179.8 ± 16.0 MJ. The pups were weaned at an average body mass of 42.5 ± 1.0 kg 3.1 days after the experiment was initiated. During the first days of the postweaning fast the pups lost an average of 1.3 ± 0.5␣kg of body mass daily, of which 56% was water, 16% fat and 28% protein. During the nursing period the average daily water influx for the pups was 124.6 ± 25.8 ml · kg−1. The average CO2 production during this period was 1.10 ± 0.20 ml · g−1 · h−1, which corresponds to a field metabolic rate of 714 ± 130 kJ ·  kg−1 · day−1, or 5.8 ± 1.1 times the predicted basal metabolic rate according to Kleiber (1975). During the postweaning fast the average daily water influx was reduced to 16.1 ± 6.6 ml · kg−1. The average CO2 production in␣this period was 0.58 ± 0.17 ml · g−1 · h−1 which corresponds to a field metabolic rate of 375 ± 108 kJ · kg−1 · day−1 or 3.2 ± 0.9 times the predicted basal metabolic rate. Average values for milk composition were 33.5% water, 58.6% fat and 6.2% protein. The pups drank an average of 10.4 ± 1.8␣kg of milk daily, which represents an energy intake of 248.9 ± 39.1 MJ · day−1. The pups were able to store 73.2 ± 7.7% of this energy as body tissue. Accepted: 15 August 1996  相似文献   

17.
Though field data for naturally senesced leaf litter are rare, it is commonly assumed that rising atmospheric CO2 concentrations will reduce leaf litter quality and decomposition rates in terrestrial ecosystems and that this will lead to decreased rates of nutrient cycling and increased carbon sequestration in native ecosystems. We generally found that the quality of␣naturally senesced leaf litter (i.e. concentrations of C, N and lignin; C:N, lignin:N) of a variety of native plant species produced in alpine, temperate and tropical communities maintained at elevated CO2 (600–680 μl l−1) was not significantly different from that produced in similar communities maintained at current ambient CO2 concentrations (340–355 μl l−1). When this litter was allowed to decompose in situ in a humid tropical forest in Panama (Cecropia peltata, Elettaria cardamomum, and Ficus benjamina, 130 days exposure) and in a lowland temperate calcareous grassland in Switzerland (Carex flacca and a graminoid species mixture; 261 days exposure), decomposition rates of litter produced under ambient and elevated CO2 did not differ significantly. The one exception to this pattern occurred in the high alpine sedge, Carex curvula, growing in the Swiss Alps. Decomposition of litter produced in situ under elevated CO2 was significantly slower than that of litter produced under ambient CO2 (14% vs. 21% of the initial litter mass had decomposed over a 61-day exposure period, respectively). Overall, our results indicate that relatively little or no change in leaf litter quality can be expected in plant communities growing under soil fertilities common in many native ecosystems as atmospheric CO2 concentrations continue to rise. Even in situations where small reductions in litter quality do occur, these may not necessarily lead to significantly slower rates of decomposition. Hence in many native species in situ litter decomposition rates, and the time course of decomposition, may remain relatively unaffected by rising CO2. Received: 12 September 1996 / Accepted: 30 November 1996  相似文献   

18.
Magnesium chelatase catalyses the insertion of Mg2+ into protoporphyrin and is found exclusively in organisms which synthesise chlorophyll or bacteriochlorophyll. Soluble protein preparations containing >10 mg protein/ml, obtained by gentle lysis of barley plastids and Rhodobacter sphaeroplasts, inserted Mg2+ into deuteroporphyrin IX in the presence of ATP at rates of 40 and 8 pmoles/mg protein per min, respectively. With barley extracts optimal activity was observed with 40 mM Mg2+. The activity was inhibited by micromolar concentrations of chloramphenicol. Mutations in each of three genetic loci, Xantha-f, -g and -h, in barley destroyed the activity. However, Mg-chelatase activity was reconstituted in vitro by combining pairwise the plastid stroma protein preparations from non-leaky xantha-f, -g and -h mutants. This establishes that, as in Rhodobacter, three proteins are required for the insertion of magnesium into protoporphyrin IX in barley. These three proteins, Xantha-F, -G and -H, are referred to as Mg-chelatase subunits and they appear to exist separate from each other in vivo. Active preparations from barley and Rhodobacter yielded pellet and supernatant fractions upon centrifugation for 90 min at 272 000 × g. The pellet and the supernatant were inactive when assayed separately, but when they were combined activity was restored. Differential distribution of the Mg-chelatase subunits in the fractions was established by in vitro complementation assays using stroma protein from the xantha-f, -g, and -h mutants. Xantha-G protein was confined to the pellet fraction, while Xantha-H was confined to the supernatant. Reconstitution assays using purified recombinant BchH, BchI and partially purified BchD revealed that the pellet fraction from Rhodobacter contained the BchD subunit. The pellet fractions from both barley and Rhodobacter contained ribosomes and had an A260:A280 ratio of 1.8. On sucrose density gradients both Xantha-G and BchD subunits migrated with the plastid and bacterial ribosomal RNA, respectively. Received: 9 September 1996 / Accepted: 22 October 1996  相似文献   

19.
20.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号