首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the stability of globular protein structure is determined in a systematic way. The differential scanning calorimetry technique is applied to allow for a thermodynamic analysis of two types of globular proteins: hen's egg lysozyme (LSZ) with relatively strong internal cohesion ("hard" globular protein) and bovine serum albumin (BSA), which is known for its conformational adaptability ("soft" globular protein). Both proteins tend to be more stable in D2O compared to H2O. We explain the increase of protein stability in D2O by the observation that D2O is a poorer solvent for nonpolar amino acids than H2O, implying that the hydrophobic effect is larger in D2O. In case of BSA the transitions between different isomeric forms, at low pH values the Nm and F forms, and at higher pH values Nm and B, were observed by the presence of a supplementary peak in the DSC thermogram. It appears that the pH-range for which the Nm form is the preferred one is wider in D2O than in H2O.  相似文献   

2.
Hydrophobicity of amino acid subgroups in proteins   总被引:14,自引:0,他引:14  
Protein folding studies often utilize areas and volumes to assess the hydrophobic contribution to conformational free energy (Richards, F.M. Annu. Rev. Biophys. Bioeng. 6:151-176, 1977). We have calculated the mean area buried upon folding for every chemical group in each residue within a set of X-ray elucidated proteins. These measurements, together with a standard state cavity size for each group, are documented in a table. It is observed that, on average, each type of group buries a constant fraction of its standard state area. The mean area buried by most, though not all, groups can be closely approximated by summing contributions from three characteristic parameters corresponding to three atom types: (1) carbon or sulfur, which turn out to be 86% buried, on average; (2) neutral oxygen or nitrogen, which are 40% buried, on average; and (3) charged oxygen or nitrogen, which are 32% buried, on average.  相似文献   

3.
Although the hydrophobic effect is generally considered to be one of the most important forces in stabilizing the folded structure of a globular protein molecule, there is a lack of consensus on the precise magnitude of this effect. The magnitude of the hydrophobic effect is most directly measured by observing the change in stability of a protein molecule when an internal hydrophobic residue is mutated to another of smaller size. Results of such measurements have, however, been confusing because they vary greatly and are generally considerably larger than expected from the transfer free energies of corresponding small molecules. In this article, a thermodynamic argument is presented to show (1) that the variation is mainly due to that in the flexibility of the protein molecule at the site of mutation, (2) that the maximum destabilization occurs when the protein at the site of mutation is rigid, in which case the value of the destabilization is approximately given by the work of cavity formation in water, and (3) that the transfer free energy approximately gives the minimum of the range of variations. The best numerical agreements between the small molecule and the protein systems are obtained when the data from the small molecule system are expressed as the molarity-based standard free energies without other corrections.  相似文献   

4.
An analysis of higher-order structures of globular proteins by means of a distance-constraint approach is presented. Conformations are generated for each of 21 test proteins of small and medium sizes by optimizing an objective functionf=w ij(d ijd ij)2, whered ij is a distance between residuesi andj in a calculated conformation, d ij is an assigned distance to the (ij) pair of residues which is determined based on the statistics of known three-dimensional structures of 14 proteins in the earlier study, andw ij is a weighting factor. d ij involves information about hydrophobicity and hydrophilicity of each amino acid residue and about connectivity of a polypeptide chain. In these calculations, only the amino acid sequence is used as input data specific to a calculated protein. With respect to higher-order structures regenerated in the optimized conformations, the following properties are analyzed: (a) N14 of a residue, defined as the number of residues surrounding the residue located within a sphere of radius of 14 Å; (b) root-mean-square differences of the global and local conformations from the corresponding X-ray conformations; (c) distance profiles in the short and medium ranges; and (d) distance maps. The effects of supplementary information about locations of secondary structures and disulfide bonds are also examined to discuss the potential ability of this methodology to predict the three-dimensional structures of globular proteins.  相似文献   

5.
A method is described for the prediction of probable folding pathways of globular proteins, based on the analysis of distance maps. It is applicable to proteins of unknown spatial structure but known amino acid sequence as well as to proteins of known structure. It is based on an objective procedure for the determination of the boundary of compact regions that contain high densities of interresidue contacts on the distance map of a globular protein. The procedure can be used both with contact maps derived from a known three-dimensional protein structure and with predicted contact maps computed by means of a statistical procedure from the amino acid sequence alone. The computed contact map can also be used to predict the location of compact short-range structures, viz. -helices and -turns, thereby complementing other statistical predictive procedures. The method provides an objective basis for the derivation of a theoretically predicted pathway of protein folding, proposed by us earlier [Tanaka and Scheraga (1977) Macromolecules10, 291–304; Némethy and Scheraga (1979) Proc. Natl. Acad. Sci., U.S.A.76, 6050–6054].  相似文献   

6.
Shurki A  Warshel A 《Proteins》2004,56(1):1-10
Globular proteins are characterized by the specific and tight packing of hydrophobic side-chains in the so-called "hydrophobic core." Formation of the core is key in folding, stabilization, and conformational specificity. The critical role of hydrophobic cores in maintaining the highly ordered structures present in natural proteins justifies the tremendous efforts devoted to their redesign. Both experimental and computational combinatorial-based approaches have been reported in the last years as powerful protein design tools. These manage to explore large regions of the sequence/conformational space, allowing the search for alternative protein core arrangements displaying native-like properties. The overall results obtained from core design projects have contributed significantly to our present knowledge of protein folding and function. In addition, core design has worked as a benchmark for the development of ambitious protein design projects that nowadays are allowing the de novo design of novel protein structures and functions.  相似文献   

7.
To investigate the nature of hydrophobic collapse considered to be the driving force in protein folding, we have simulated aqueous solutions of two model hydrophobic solutes, methane and isobutylene. Using a novel methodology for determining contacts, we can precisely follow hydrophobic aggregation as it proceeds through three stages: dispersed, transition, and collapsed. Theoretical modeling of the cluster formation observed by simulation indicates that this aggregation is cooperative and that the simulations favor the formation of a single cluster midway through the transition stage. This defines a minimum solute hydrophobic core volume. We compare this with protein hydrophobic core volumes determined from solved crystal structures. Our analysis shows that the solute core volume roughly estimates the minimum core size required for independent hydrophobic stabilization of a protein and defines a limiting concentration of nonpolar residues that can cause hydrophobic collapse. These results suggest that the physical forces driving aggregation of hydrophobic molecules in water is indeed responsible for protein folding.  相似文献   

8.
The analysis of temperature-induced unfolding of proteins in aqueous solutions was performed. Based on the data of thermodynamic parameters of protein unfolding and using the method of semi-empirical calculations of hydration parameters at reference temperature 298 K, we obtained numerical values of enthalpy, free energy, and entropy which characterize the unfolding of proteins in the ‘gas phase’. It was shown that specific values of the energy of weak intramolecular bonds (?Hint), conformational free energy (?Gconf) and entropy (?Sconf) are the same for proteins with molecular weight 7–25 kDa. Using the energy value (?Hint) and the proposed approach for estimation of the conformational entropy of native protein (SNC), numerical values of the absolute free energy (GNC) were obtained.  相似文献   

9.
The dynamic differential equation model developed and tested for bovine pancreatic trypsin inhibitor and tuna ferrocytochrome c in Ponnuswamy, P.K. & Bhaskaran, R. (Int. J. Peptide Protein Res. 24, 168-179, 1984) is extended for 17 more protein crystals in this work. Average displacements are computed for 20 amino acid residues observed in 19 proteins. Detailed information on the dynamic behaviour of the individual proteins and individual residues is presented. The effect of atomic packing on the fluctuations of the amino acid residues in alpha-chymotrypsin is illustrated. A number of general points on the dynamic characteristics of globular protein molecules are presented.  相似文献   

10.
Dynamic structures of globular proteins are studied on the basis of correlative movements of residues around their native conformations, which are computed by means of the normal mode analysis. To describe the dynamic structures of a protein, the core regions moving with strong positive or negative correlations to other regions of the polypeptide chain are detected from the correlation maps of the movements of residues. Such core regions are different, according to the definition, from the regions defined from a geometrical point of view, such as secondary structures, domains, modules, and so on. The core regions are actually detected for four proteins, myoglobin, Bence-Jones protein, flavodoxin, and hen egg-white lysozyme, with different folding types from each other. The results show that some of them coincide with the secondary structures, domains, or modules, but others do not. Then, the dynamic structure of each protein is discussed in terms of the dynamic cores detected, as compared with the secondary structures, domains, and modules.  相似文献   

11.
A monomolecular native-like three-helix bundle has been designed in an iterative process, beginning with a peptide that noncooperatively assembled into an antiparallel three-helix bundle. Three versions of the protein were designed in which specific interactions were incrementally added. The hydrodynamic and spectroscopic properties of the proteins were examined by size exclusion chromatography, sedimentation equilibrium, fluorescence spectroscopy, and NMR. The thermodynamics of folding were evaluated by monitoring the thermal and guanidine-induced unfolding transitions using far UV circular dichroism spectroscopy. The attainment of a unique, native-like state was achieved through the introduction of: (1) helix capping interactions; (2) electrostatic interactions between partially exposed charged residues; (3) a diverse collection of apolar side chains within the hydrophobic core.  相似文献   

12.
A novel sequence-analysis technique for detecting correlated amino acid positions in intermediate-size protein families (50-100 sequences) was developed, and applied to study voltage-dependent gating of potassium channels. Most contemporary methods for detecting amino acid correlations within proteins use very large sets of data, typically comprising hundreds or thousands of evolutionarily related sequences, to overcome the relatively low signal-to-noise ratio in the analysis of co-variations between pairs of amino acid positions. Such methods are impractical for voltage-gated potassium (Kv) channels and for many other protein families that have not yet been sequenced to that extent. Here, we used a phylogenetic reconstruction of paralogous Kv channels to follow the evolutionary history of every pair of amino acid positions within this family, thus increasing detection accuracy of correlated amino acids relative to contemporary methods. In addition, we used a bootstrapping procedure to eliminate correlations that were statistically insignificant. These and other measures allowed us to increase the method's sensitivity, and opened the way to reliable identification of correlated positions even in intermediate-size protein families. Principal-component analysis applied to the set of correlated amino acid positions in Kv channels detected a network of inter-correlated residues, a large fraction of which were identified as gating-sensitive upon mutation. Mapping the network of correlated residues onto the 3D structure of the Kv channel from Aeropyrum pernix disclosed correlations between residues in the voltage-sensor paddle and the pore region, including regions that are involved in the gating transition. We discuss these findings with respect to the evolutionary constraints acting on the channel's various domains. The software is available on our website  相似文献   

13.
Nguyen MN  Rajapakse JC 《Proteins》2006,63(3):542-550
We address the problem of predicting solvent accessible surface area (ASA) of amino acid residues in protein sequences, without classifying them into buried and exposed types. A two-stage support vector regression (SVR) approach is proposed to predict real values of ASA from the position-specific scoring matrices generated from PSI-BLAST profiles. By adding SVR as the second stage to capture the influences on the ASA value of a residue by those of its neighbors, the two-stage SVR approach achieves improvements of mean absolute errors up to 3.3%, and correlation coefficients of 0.66, 0.68, and 0.67 on the Manesh dataset of 215 proteins, the Barton dataset of 502 nonhomologous proteins, and the Carugo dataset of 338 proteins, respectively, which are better than the scores published earlier on these datasets. A Web server for protein ASA prediction by using a two-stage SVR method has been developed and is available (http://birc.ntu.edu.sg/~ pas0186457/asa.html).  相似文献   

14.
The energetic consequences of site-specific replacement of a residue at a partially buried site in the two homologous HPr proteins from Escherichia coli and Bacillus subtilis is described. We determined previously that the replacement of a partially buried Lys residue with Glu at position 49 in E.coli HPr increased the conformational stability of the protein substantially because the side-chain of the latter residue could act as a hydrogen-bond acceptor. Here, we extend this analysis to other side-chains with different chemical properties and abilities to form hydrogen bonds to compare the properties of this position in the backgrounds of two different homologous HPr proteins. We find that the variants with polar residues that can form a tertiary hydrogen bond with a nearby site in the protein are more stable than either hydrophobic residues or polar residues that become buried yet are incapable of forming a new hydrogen bond. Furthermore, the protein with the wild-type residue in each HPr variant is not among the most stable of the proteins studied. These results suggest a general strategy for designing variants in which the overall stability of a protein can be modulated in a defined fashion.  相似文献   

15.
Recent ab initio folding simulations for a limited number of small proteins have corroborated a previous suggestion that atomic burial information obtainable from sequence could be sufficient for tertiary structure determination when combined to sequence‐independent geometrical constraints. Here, we use simulations parameterized by native burials to investigate the required amount of information in a diverse set of globular proteins comprising different structural classes and a wide size range. Burial information is provided by a potential term pushing each atom towards one among a small number L of equiprobable concentric layers. An upper bound for the required information is provided by the minimal number of layers Lmin still compatible with correct folding behavior. We obtain Lmin between 3 and 5 for seven small to medium proteins with 50 ≤ Nr ≤ 110 residues while for a larger protein with Nr = 141 we find that L ≥ 6 is required to maintain native stability. We additionally estimate the usable redundancy for a given LLmin from the burial entropy associated to the largest folding‐compatible fraction of “superfluous” atoms, for which the burial term can be turned off or target layers can be chosen randomly. The estimated redundancy for small proteins with L = 4 is close to 0.8. Our results are consistent with the above‐average quality of burial predictions used in previous simulations and indicate that the fraction of approachable proteins could increase significantly with even a mild, plausible, improvement on sequence‐dependent burial prediction or on sequence‐independent constraints that augment the detectable redundancy during simulations. Proteins 2016; 84:515–531. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Baussand J  Deremble C  Carbone A 《Proteins》2007,67(3):695-708
Several studies on large and small families of proteins proved in a general manner that hydrophobic amino acids are globally conserved even if they are subjected to high rate substitution. Statistical analysis of amino acids evolution within blocks of hydrophobic amino acids detected in sequences suggests their usage as a basic structural pattern to align pairs of proteins of less than 25% sequence identity, with no need of knowing their 3D structure. The authors present a new global alignment method and an automatic tool for Proteins with HYdrophobic Blocks ALignment (PHYBAL) based on the combinatorics of overlapping hydrophobic blocks. Two substitution matrices modeling a different selective pressure inside and outside hydrophobic blocks are constructed, the Inside Hydrophobic Blocks Matrix and the Outside Hydrophobic Blocks Matrix, and a 4D space of gap values is explored. PHYBAL performance is evaluated against Needleman and Wunsch algorithm run with Blosum 30, Blosum 45, Blosum 62, Gonnet, HSDM, PAM250, Johnson and Remote Homo matrices. PHYBAL behavior is analyzed on eight randomly selected pairs of proteins of >30% sequence identity that cover a large spectrum of structural properties. It is also validated on two large datasets, the 127 pairs of the Domingues dataset with >30% sequence identity, and 181 pairs issued from BAliBASE 2.0 and ranked by percentage of identity from 7 to 25%. Results confirm the importance of considering substitution matrices modeling hydrophobic contexts and a 4D space of gap values in aligning distantly related proteins. Two new notions of local and global stability are defined to assess the robustness of an alignment algorithm and the accuracy of PHYBAL. A new notion, the SAD-coefficient, to assess the difficulty of structural alignment is also introduced. PHYBAL has been compared with Hydrophobic Cluster Analysis and HMMSUM methods.  相似文献   

17.
Globular proteins are assemblies of alpha-helices and beta-strands, interconnected by reverse turns and longer loops. Most short turns can be classified readily into a limited repertoire of discrete backbone conformations, but the physical-chemical determinants of these distinct conformational basins remain an open question. We investigated this question by exhaustive analysis of all backbone conformations accessible to short chain segments bracketed by either an alpha-helix or a beta-strand (i.e., alpha-segment-alpha, beta-segment-beta, alpha-segment-beta, and beta-segment-alpha) in a nine-state model. We find that each of these four secondary structure environments imposes its own unique steric and hydrogen-bonding constraints on the intervening segment, resulting in a limited repertoire of conformations. In greater detail, an exhaustive set of conformations was generated for short backbone segments having reverse-turn chain topology and bracketed between elements of secondary structure. This set was filtered, and only clash-free, hydrogen-bond-satisfied conformers having reverse-turn topology were retained. The filtered set includes authentic turn conformations, observed in proteins of known structure, but little else. In particular, over 99% of the alternative conformations failed to satisfy at least one criterion and were excluded from the filtered set. Furthermore, almost all of the remaining alternative conformations have close tolerances that would be too tight to accommodate side chains longer than a single beta-carbon. These results provide a molecular explanation for the observation that reverse turns between elements of regular secondary can be classified into a small number of discrete conformations.  相似文献   

18.
Results are presented for proteins with known three-dimensional structure (lysozyme, myoglobin, ribonuclease), which show that the probability of label incorporation upon bombardment by hot tritium atoms may be quantitatively linked with the surface area of the protein accessible to water molecules. Possible deviations from simple linear dependency caused by particular mechanisms of label introduction are discussed. The data obtained in experiments with model systems were used to determine the accessible surface area of human serum albumin, for which structural data is not sufficiently accurate to allow estimation of accessible surface area. Experimental data correlate reasonably well with estimations based on conventional concepts of the relationship between accessible surface area and molecular weight for globular proteins. Correspondence to: A. V. Volynskaya  相似文献   

19.
Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interactions with proteins. A method for detecting specific xenon-binding interactions by analysis of 129Xe chemical shift data is illustrated using the maltose binding protein (MBP) from Escherichia coli as an example. The crystal structure of MBP in the presence of 8atm of xenon confirms the binding site determined from NMR data. Changes in the structure of the xenon-binding cavity upon the binding of maltose by the protein can account for the sensitivity of the 129Xe chemical shift to MBP conformation. 129Xe NMR data for xenon in solution with a number of cavity containing phage T4 lysozyme mutants show that xenon can report on cavity structure. In particular, a correlation exists between cavity size and the binding-induced 129Xe chemical shift. Further applications of 129Xe NMR to biochemical assays, including the screening of proteins for xenon binding for crystallography are considered.  相似文献   

20.
A new algorithm to predict the types of membrane proteins is proposed. Besides the amino acid composition of the query protein, the information within the amino acid sequence is taken into account. A formulation of the autocorrelation functions based on the hydrophobicity index of the 20 amino acids is adopted. The overall predictive accuracy is remarkably increased for the database of 2054 membrane proteins studied here. An improvement of about 13% in the resubstitution test and 8% in the jackknife test is achieved compared with those of algorithms based merely on the amino acid composition. Consequently, overall predictive accuracy is as high as 94% and 82% for the resubstitution and jackknife tests, respectively, for the prediction of the five types. Since the proposed algorithm is based on more parameters than those in the amino acid composition approach, the predictive accuracy would be further increased for a larger and more class-balanced database. The present algorithm should be useful in the determination of the types and functions of new membrane proteins. The computer program is available on request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号