首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

2.
Steady state levels of in vivo nitrate reductase activity in the endosperm, scutella, roots and shoots of maize seedlings were higher in normal maize than those in high lysine maize. Activity of peroxidase in the roots, however, was higher in the high lysine cultivar. The nitrate reductase activity increased with the supply of nitrate in all parts of the seedlings of both cultivars, although the rates of increment in the endosperm were lower than those in scutella, roots and shoots. In relation to substrate concentration, a saturation was achieved at 5 to 10 mM of nitrate except in the endosperm, where activity increased slowly up to 100 mM at least. Final levels of enzyme activity were significantly higher in the scutella of normal than in that of high lysine seedlings. In vitro enzyme activity in the roots also increased with the supply of nitrate in both cultivars, reaching maximum at 5 to 10 mM nitrate.  相似文献   

3.
The rate of nitrate uptake by N-depleted French dwarf bean (Phaseolus vulgaris L. cv. Witte Krombek) increased steadily during the first 6 h after addition of NO3 -After this initial phase the rale remained constant for many hours. Detached root systems showed the same time-course of uptake as roots of intact plants. In vivo nitrate reductase activity (NRA) was assayed with or without exogenous NO3- in the incubation medium and the result ing activities were denoted potential and actual level, respectively. In roots the difference between actual and potential NRA disappeared within 15 min after addition of nitrate, and NRA increased for about 15 h. Both potential and actual NRA were initially very low. In leaves, however, potential NRA was initially very high and was not affected by ambient nitrate (0.1–5 mol m-3) for about 10 h. Actual and potential leaf NRA became equal after the same period of time. In the course of nitrate nutrition, the two nitrate reductase activities in leaves were differentially inhibited by cycloheximide (3.6 mmol m-3) and tungstate (1 mol m-3). We suggest that initial potential NRA reflects the activity of pre-existing enzyme, whereas actual NRA depends on enzyme assembly during NO3- supply. Apparent induction of nitrate uptake and most (85%) of the actual in vivo NRA occurred in the root system during the first 6 h of nitrate utilization by dwarf bean.  相似文献   

4.
The nitrate reductase activities (NRA) of 31 ditelosomic stocks were compared with that of the control plant [Chinese Spring (CS) euploid], using in vivo and in vitro assay procedures that had been optimized with respect to the euploid. Fourteen stocks exhibited significant differences in in vivo NRA from that of the euploid; the effect of removal of a chromosome arm was always to increase NRA. Eight of these stocks showed similar effects in vitro, although in three, a casein-sensitive factor had to be eliminated before the difference was expressed. Homoeologous group effects were evident among ditelosomics of groups 2, 4, and 7, while for three chromosomes (2D, 7A, and 7B), removal of either arm resulted in a similar increase in NRA in vivo and probably in vitro.P. W. Jones was supported by a Science Research Council C.A.S.E. award with the Plant Breeding Institute, Cambridge, U.K.  相似文献   

5.
Abstract Effect of ammonium on in vivo activity of nitrate reductase in roots, shoots and leaves of maize (Zea mays L.) seedlings was studied in relation to light/dark conditions and EDTA supply. Supply of 5 mM (NH4)2SO4 increased the steady state level of enzyme only in leaves and in light, while it had no effect in roots and shoots and in the dark. The substrate induction of enzyme was also little affected by 1 to 10 mM (NH4)2SO4 in roots and shoots. In the leaves the activity in the dark was either inhibited (minus EDTA) or stimulated (plus EDTA) by 5 to 10 mM (NH4)2SO4. The activity was stimulated in the light also in the presence of EDTA at higher concentrations of ammonium. When different concentrations of ammonium were supplied without any exogenous nitrate in the light, the enzyme activity increased at low concentration and was either inhibited or unaffected at higher concentrations depending upon the tissue used. Supply of EDTA with ammonium modified its effect to some extent. It is suggested that the effect of ammonium on nitrate reductase activity depends upon the tissue used and the effective concentration of the ammonium.  相似文献   

6.
Intertidal macroalgae Fucus and Laminaria experience seasonally fluctuating inorganic N supply. This study examined the effects of long‐term N deprivation, recovery following N resupply, and effects of elevated ammonium and nitrate exposure on N acquisition in intertidal algae using manipulations of N supply in tank culture. Over 15 weeks of N deprivation, internal N and nitrate reductase activity (NRA) declined, but maximum quantum yield of PSII was unaffected in Fucus serratus and Fucus vesiculosus. Low NRA was maintained despite no external nitrate availability and depletion of internal pools, suggesting a constitutive NRA, insensitive to N supply. Nitrate resupplied to N‐starved thalli was rapidly taken up and internal nitrate pools and NRA increased. Exposure to elevated (50 μM) nitrate over 4 days stimulated nitrate uptake and NRA in Laminaria digitata and F. serratus. Exposure to elevated ammonium suppressed NRA in L. digitata but not in F. serratus. This novel insensitivity of NRA to ammonium in Fucus contrasts with regulation of NRA in other algae and higher plants. Ammonium suppression of NRA in L. digitata was not via inhibition of nitrate uptake and was independent of nitrate availability. L. digitata showed a higher capacity for internal nitrate storage when exposed to elevated ambient nitrate, but NRA was lower than in Fucus. All species maintained nitrate assimilation capacity in excess of nitrate uptake capacity. N uptake and storage strategies of these intertidal macroalgae are adaptive to life in fluctuating N supply, and distinct regulation of N metabolism in Fucus vs Laminaria may relate to position in the intertidal zone.  相似文献   

7.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

8.
Two experiments were conducted to evaluate the effects of phenotypicrecurrent selection for high and low post-anthesis leaf-laminain vivo NRA on nitrate uptake, nitrate partitioning and in vitroNRA of seedling roots and leaves. In Experiment 1, intact plantsof cycle 0, 4, and 6 of the high and low NRA strains were grownon NH4-N for 11 d, then exposed to 1.0 mol m–3 KNO3, andcultures sampled at 6 h and 28 h (induction and post-inductionperiods). Nitrate uptake, tissue nitrate concentration and invitro NRA were determined. The pattern of response to selectionin seedling leaf NRA was similar to that observed for in vivoNRA of field grown plants. Leaf NRA increased between 6 h and28 h. Root NRA was not affected by selection or sampling time.Treatments differed in total fresh weight but not in reductionor uptake of nitrate per unit weight, indicating a lack of correspondencebetween NRA and reduction and supporting the idea that concomitantreduction by NR is not obligatorily linked to nitrate influxin the intact plant. In Experiment 2, dark-grown plants of cycle 0, and 6 of thehigh and low NRA strains were cultured without N, detopped onday 6, transferred the following day to 0-75 mol m–3 KNO3and sampled at 6 h and 28 h. In contrast to Experiment 1, selectionpopulations differed in nitrate reduction and root NRA, whichby 28 h reached higher average levels than root NRA of intactplants. Translocation and reduction were inversely related amongstrains within each sampling time. The high level of translocationin detopped plants of the low NRA strain was difficult to reconcilewith its low leaf NRA level of Experiment 1. It is suggestedthat nitrate transport in detopped roots is altered relativeto the intact system in a way which permits greater NRA inductionand nitrate reduction. The results indicate that nitrate partitioningby detopped root systems should be interpreted with caution. Key words: Zea, nitrate reductase activity, nitrate uptake, nitrate reduction, nitrate partitioning, selection  相似文献   

9.
Nitrate concentration and nitrate reductase activity (NRA) were studied in the leaves of soybean (Glycine max), groundnut (Arachis hypogaea and cowpea (Vigna unguiculata) and sorghum (Sorghum bicolor), pearl millet (Pennisetum americanum) and maize (Zea mays) at three nitrogen fertiliser levels in two field experiments. Higher nitrate concentrations were detected in the leaves of groundnut, cowpea and pearl millet than in sorghum and maize. Nitrate content in the leaves and leaf NRA were not related across crop species, nor was a generalised pattern of leaf NRA and leaf nitrate observed within legumes or within cereals. Nitrogen application resulted in higher nitrate availability in the leaves, with varied leaf NRA.  相似文献   

10.
The in vivo nitrate reductase activity in leaf tissue of cotton (Gossypium hirsutum L.) was characterized. Enzymatic activity was linear with time up to 60 min. The assay for nitrate reductase activity was optimized in leaf slices 400 μm wide incubated in an anaerobic system at 30°C, in a 0.02 M KNO3 medium at pH 7.0 with 1 % propanol. In vivo activity was highest in recently matured leaves at the top of the plant. Both light and nitrate enhanced in vivo enzymatic activity. The activity was highest after 9 hours in the light and then decreased steadily for several more hours even in the presence of light. The nitrate reductase activity was more strongly correlated to the levels of NO3-N in the culture solution than to the NO3-N level in the tissue. The utility of this technique in nitrate reductase assay in a tissue containing large amounts of phenolic compounds is discussed.  相似文献   

11.
Growth at increasing continuous irradiance (at high nutrient nitrate) and nutrient nitrate concentrations (at high continuous irradiance) furnished increases in the in vivo and in vitro nitrate reductase activities of corn (Zea mays L.), field peas (Pisum arvense L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and globe amaranth (Gomphrena globosa L.) leaves and of marrow (Cucurbita pepo L.) cotyledons. Ratios of in vivo to in vitro activity declined exponentially in all species with increasing nitrate reductase levels promoted by nutrient nitrate. The ratios were more nearly independent of nitrate reductase levels generated by adjusting the irradiance; major exceptions were marrow and wheat at low (1.5 klux and less) irradiances and peas throughout the irradiance range, where decreases in the ratio were accompanied by increases in in situ nitrate concentration. The ratio also increased at the highest irradiance (39.2 klux) in wheat and barley, associated with a decline of in vitro nitrate reductase. These differences in response to irradiance and nutrient nitrate indicate that the in vivo assay does not provide a simple measure of nitrate reductase but rather yields a more composite measure of nitrate reduction, possibly related both to nitrate reductase level and to the supply of reductant for in vivo activity.  相似文献   

12.
To study aspects of the ecology of grassland species, in a comparative experiment, plants ofP. lanceolata andP. major were grown in pots in a greenhouse, and subjected to a gradual nitrate depletion for several weeks. Control plants were weekly supplied with nitrate. Growth, leaf appearance and disappearance, concentrations of cations and inorganic anions, soluble and insoluble reduced nitrogen concentrations,in vivo nitrate reductase activity (NRA) and the concentration of non-structural carbohydrates in several parts of the plants were followed. Depletion of nitrate caused a reduction of shoot growth, both in biomass and number of leaves. Withering of leaves increased. Accumulation of root dry matter was little (P. lanceolata), or not (P. major) affected. The concentration of reduced nitrogen in all tissues also decreased, both that of the soluble and that of the insoluble fraction. As a result, nitrogen use efficiency (NUE, g dry matter produced per mmol N incorporated) increased by nitrate depletion. NRA was higher in the roots than in the leaves, and decreased with increasing nitrate depletion. In control plants, nitrate became also limiting. This resulted in decreasing nitrate concentrations in leaves and roots. In the leaves, the decrease in nitrate concentration was preceded by a decrease in NRA. The decrease of the nitrate concentration was parallelled by an increase in the concentration of soluble sugar. No major differences in the response towards nitrate depletion were observed between the two species. Grassland Species Research Group, publication no. 129  相似文献   

13.
Summary Nitrate reductase activity (NRA), nitrate content and biomass components of leaflets, leaf stalks, old stem, current-year stem and roots of ash trees (Fraxinus excelsior L.) growing in their natural habitats were investigated. In addition, NRA, total nitrogen and nitrate concentration were analyzed in the leaves and roots of ash trees from four different field sites. The highest NRA per gram biomass and also per total compartment biomass was found in the leaflets, even though root biomass was much higher than total leaflet biomass. The highest nitrate concentrations were found in the leaf stalks. Correlations between nitrate availability in the soil and NRA in leaves were not significant due to high variability of the actual soil nitrate concentrations. The seasonal variation in foliar NRA, nitrate concentration and total nitrogen concentration is much smaller in F. excelsior than reported for herbaceous species and is mainly caused by changes in the actual soil nitrate availability and by senescence of the leaves.  相似文献   

14.
Nitrogen fixing plants of lucerne (Medicago sativa L. cv. Aragón) were grown in a glasshouse for three months in the absence of nitrate, and then supplied with 5 mM KNO3 for a week. In control (non-nitrate fed) plants, nitrate reductase activity (NRA EC 1.6.6.1) was detected only in nodules. After nitrate supply, root NRA showed a transient increase. Shoot NRA increased with time, paralleling changes in nitrate distribution; stem NRA represented nearly 50% of total NRA in plant tissues. Total nitrogen, expressed on a dry weight basis, tended to decrease in shoots upon nitrate supply. Bacteroid NRA (EC 1.7.99.4) showed a great variation depending on Rhizobium meliloti strains, ranging from 5 to 40% of total plant NRA. However, different Rhizobium strains did not give different results in terms of plant growth parameters, nitrate or organic nitrogen content.  相似文献   

15.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results.  相似文献   

16.
A. Melzer  R. Kaiser 《Oecologia》1986,69(4):606-611
Summary 11 macrophytic species from a groundwater influenced chalk stream in Upper Bavaria were investigated during a period of one year in order to determine differences in the endogenous nitrate content, in total nitrogen content and in nitrate reductase activity (NRA). Nitrate concentrations of different plants taken from the same site of the river varied by a factor of approximately 103. A maximum of 1,958 mol NO 3 - g-1 dry w. could be measured in the petioles of Nasturtium officinale, which accounts for 12% of plant dry w. Very high values were also found in Callitriche obtusangula and Veronica angallis-aquatica. In comparison to the ambient water, mean accumulation rates of up to 131 could be found. In Fontinalis antipyretica, the plant poorest in nitrate, the ratio was only 1.24:1. Elodea canadensis belonged to a group of plants having very low nitrate concentrations. Since NRA was very low too, it is assumed that nitrogen nutrition of this species depends rather on ammonia than on nitrate. With a few exceptions nitrate content of different plant organs varied markedly. In general they were lowest in leaves and highest in shoot axes. Appreciable amounts of nitrate were also found in the roots of plants. No correlation could be found between endogenous nitrate content and NRA. In contrast to endogenous nitrate content and NRA, total nitrogen concentrations of the plants did not differ significantly.  相似文献   

17.
It has been shown recently that in spinach leaves (Spinacia oleracea) net photosynthesis and nitrate reduction are closely linked: when net photosynthesis was low because of stomatal closure, rates of nitrate reduction decreased (WM Kaiser, J Förster [1989] Plant Physiol 91: 970-974). Here we present evidence that photosynthesis regulates nitrate reduction by modulating nitrate reductase activity (NRA, EC 1.6.6.1). When spinach leaves were exposed to low CO2 in the light, extractable NRA declined rapidly with a half-time of 15 minutes. The inhibition was rapidly reversed when leaves were brought back to air. NRA was also inhibited when leaves were wilted in air; this inhibition was due to decreased CO2 supply as a consequence of stomatal closure. The modulation of NRA was stable in vitro. It was not reversed by gel filtration. In contrast, the in vitro inhibition of nitrate reductase (NR) by classical inhibitors such as cyanide, hydroxylamin, or NADH disappeared after removal of free inhibitors by gel filtration. The negative modulation of NRA in —CO2-treated leaves became manifest as a decrease in total enzyme activity only in the presence of free Mg2+ or Ca2+. Mg2+ concentrations required for observing half-maximal inhibition were about 1 millimolar. In the presence of EDTA, the enzyme activity was always high and rather independent of the activation status of the enzyme. NRA was also independent of the pH in the range from pH 7 to pH 8, at saturating substrate and Mg2+ concentrations. The apparent substrate affinities of NR were hardly affected by the in vivo modulation of NR. Only Vmax changed.  相似文献   

18.
A Re-evaluation of the Nitrate Reductase Content of the Maize Root   总被引:6,自引:4,他引:2       下载免费PDF全文
Wallace W 《Plant physiology》1975,55(4):774-777
The standard procedure for the in ritro extraction of nitrate reductase from the tip region (0-2 cm) of the primary root of the maize (Zea mays L.) seedling indicated an activity of the enzyme approximately 5-fold higher than that obtained with an in vivo assay. In more mature regions of the primary root the ratio of in vitro to in vivo activity was much lower and in older seedlings was less than unity. The mature root extracts had a more labile nitrate reductase and a higher level of an inactivating enzyme. The use of phenylmethylsulphonyl fluoride in the extraction medium gave only a partial protection of the nitrate reductase from the old root samples. Casein (3%) resulted in a greatly increased yield of nitrate reductase (36-fold with one sample) and a more constant in vitro-in vivo activity ratio for all root samples. With casein in the extraction medium, much higher levels of nitrate reductase were recovered from the mature root zone, and the root content of this enzyme was now shown to be quite a significant proportion of the total in the maize seedling. Casein was shown to inhibit the action of the inactivating enzyme on nitrate reductase. Evidence is also presented for a nitrate reductase inactivating enzyme in the maize scutella and leaf tissues and in the roots and shoots of pea seedlings.  相似文献   

19.
The patterns of nitrate reductase activity (NRA) in the leaves (in vivo assay) and root nodule nitrogenase activity (C2H2 reduction) were investigated throughout the season in field-grown Phaseolus vulgaris plants.  相似文献   

20.
Summary Numbers of autotrophic nitrifiers in the rhizosphere, and thein vivo nitrate reductase activity (NRA) in the leaves of individual plants ofPlantago lanceolata were determined in plants at two contrasting sites. In a dune grassland, high numbers of nitrifiers were present in the rhizosphere, and significant NRA was detected in the leaves. During dry periods nitrate utilization sometimes was depressed. In a wet hayfield, on peat soil, very low numbers of nitrifiers were found in the rhizosphere. Also the NRA was low. In the wet habitat, the NRA in the leaves of some fen species, containing aerenchyma in the roots, was higher than that ofP. lanceolata, not containing aerenchyma.Grassland Species Research Group. Publication No. 105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号