首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present studies used increased atmospheric pressure in place of a traditional pharmacological antagonist to probe the molecular sites and mechanisms of ethanol action in glycine receptors (GlyRs). Based on previous studies, we tested the hypothesis that physical–chemical properties at position 52 in extracellular domain Loop 2 of α1GlyRs, or the homologous α2GlyR position 59, determine sensitivity to ethanol and pressure antagonism of ethanol. Pressure antagonized ethanol in α1GlyRs that contain a non-polar residue at position 52, but did not antagonize ethanol in receptors with a polar residue at this position. Ethanol sensitivity in receptors with polar substitutions at position 52 was significantly lower than GlyRs with non-polar residues at this position. The α2T59A mutation switched sensitivity to ethanol and pressure antagonism in the WTα2GlyR, thereby making it α1-like. Collectively, these findings indicate that (i) polarity at position 52 plays a key role in determining sensitivity to ethanol and pressure antagonism of ethanol; (ii) the extracellular domain in α1- and α2GlyRs is a target for ethanol action and antagonism and (iii) there is structural-functional homology across subunits in Loop 2 of GlyRs with respect to their roles in determining sensitivity to ethanol and pressure antagonism of ethanol. These findings should help in the development of pharmacological agents that antagonize ethanol.  相似文献   

2.
Alcohols and volatile anesthetics enhance the function of inhibitory glycine receptors (GlyRs). This is hypothesized to occur by their binding to a pocket formed between the transmembrane domains of individual alpha1 GlyR subunits. Because GlyRs are pentameric, it follows that each GlyR contains up to five alcohol/anesthetic binding sites, with one in each subunit. We asked how many subunits per pentamer need be bound by drug in order to enhance receptor-mediated currents. A cysteine mutation was introduced at amino acid serine 267 (S267C) in the transmembrane 2 domain as a tool to block GlyR potentiation by some anesthetic drugs and to provide a means for covalent binding by the small, anesthetic-like thiol reagent propyl methanethiosulfonate. Xenopus laevis oocytes were co-injected with various ratios of wild-type (wt) to S267C alpha1 GlyR cDNAs in order to express heteromeric receptors with a range of wt:mutant subunit stoichiometries. The enhancement of GlyR currents by 200 mm ethanol and 1.5 mm chloroform was positively correlated with the number of wt subunits found in heteromeric receptors. Furthermore, currents from oocytes injected with high ratios of wt to S267C cDNAs (up to 200:1) were significantly and irreversibly enhanced following propyl methanethiosulfonate labeling and washout, demonstrating that drug binding to a single subunit in the receptor pentamer is sufficient to induce enhancement of GlyR currents.  相似文献   

3.
Considerable evidence indicates that ethanol acts on specific residues in the transmembrane domains of glycine receptors (GlyRs). In this study, we tested the hypothesis that the extracellular domain is also a target for ethanol action by investigating the effect of cysteine substitutions at positions 52 (extracellular domain) and 267 (transmembrane domain) on responses to n-alcohols and propyl methanethiosulfonate (PMTS) in alpha1GlyRs expressed in Xenopus oocytes. In support of the hypothesis: (i) The A52C mutation changed ethanol sensitivity compared to WT GlyRs; (ii) PMTS produced irreversible alcohol-like potentiation in A52C GlyRs; and (iii) PMTS binding reduced the n-chain alcohol cutoff in A52C GlyRs. Further studies used PMTS binding to cysteines at positions 52 or 267 to block ethanol action at one site in order to determine its effect at other site(s). In these situations, ethanol caused negative modulation when acting at position 52 and positive modulation when acting at position 267. Collectively, these findings parallel the evidence that established the TM domain as a target for ethanol, suggest that positions 52 and 267 are part of the same alcohol pocket and indicate that the net effect of ethanol on GlyR function reflects the summation of its positive and negative modulatory effects on different targets.  相似文献   

4.
The divalent cation Zn2+ has been shown to regulate inhibitory neurotransmission in the mammalian CNS by affecting the activation of the strychnine-sensitive glycine receptor (GlyR). In spinal neurons and cells expressing recombinant GlyRs, low micromolar (<10 microM) concentrations of Zn2+ enhance glycine currents, whereas higher concentrations (>10 microM) have an inhibitory effect. Mutational studies have localized the Zn2+ binding sites mediating allosteric potentiation and inhibition of GlyRs in distinct regions of the N-terminal extracellular domain of the GlyR alpha-subunits. Here, we examined the Zn2+ sensitivity of different mutations within the agonist binding site of the homomeric alpha(1)-subunit GlyR upon heterologous expression in Xenopus oocytes. This revealed that six substitutions within the ligand-binding pocket result in a total loss of Zn2+ inhibition. Furthermore, substitution of the positively charged residues arginine 65 and arginine 131 by alanine (alpha(1)(R65A), alpha(1)(R131A), or of the aromatic residue phenylalanine 207 by histidine (alpha(1)(F207H)), converted the alpha(1) GlyR into a chloride channel that was activated by Zn2+ alone. Dose-response analysis of the alpha(1)(F207H) GlyR disclosed an EC(50) value of 1.2 microM for Zn2+ activation; concomitantly the apparent glycine affinity was 1000-fold reduced. Thus, single point mutations within the agonist-binding site of the alpha(1) subunit convert the inhibitory GlyR from a glycine-gated into a selectively Zn2+-activated chloride channel. This might be exploited for the design of metal-specific biosensors by modeling-assisted mutagenesis.  相似文献   

5.
Tropeines are bidirectional modulators of native and recombinant glycine receptors (GlyRs) and promising leads for the development of novel modulatory agents. Tropisetron potentiates and inhibits agonist-triggered GlyR currents at femto- to nanomolar and micromolar concentrations respectively. Here, the potentiating and inhibitory effects of another tropeine, 3α-(3'-methoxy-benzoyloxy)nortropane (MBN) were examined by voltage-clamp electrophysiology at wild type and mutant α1 GlyRs expressed in Xenopus laevis oocytes. Several substitutions around the agonist-binding cavity of the α1 subunit interface (N46C, F63A, N102A, R119K, R131A, E157C, K200A, Y202L and F207A) were found to reduce or eliminate MBN inhibition of glycine activation. In contrast, the binding site mutations Q67A, R119A and S129A which did not affect MBN inhibition abolished the potentiation of chloride currents elicited by low concentrations of the partial agonist taurine following pre-incubation with MBN. Thus, potentiation and inhibition involve distinct binding modes of MBN in the inter-subunit agonist-binding pocket of α1 GlyRs. Homology modelling and molecular dynamics simulations disclosed two distinct docking modes for MBN, which are consistent with the differential effects of individual binding site substitutions on MBN inhibition and potentiation respectively. Together these results suggest that distinct binding modes at adjacent binding sites located within the agonist-binding pocket of the GlyR mediate the bidirectional modulatory effects of tropeines.  相似文献   

6.
The present study tested the hypothesis that several residues in Loop 2 of alpha1 glycine receptors (GlyRs) play important roles in mediating the transduction of agonist activation to channel gating. This was accomplished by investigating the effect of cysteine point mutations at positions 50-60 on glycine responses in alpha1GlyRs using two-electrode voltage clamp of Xenopus oocytes. Cysteine substitutions produced position-specific changes in glycine sensitivity that were consistent with a beta-turn structure of Loop 2, with odd-numbered residues in the beta-turn interacting with other agonist-activation elements at the interface between extracellular and transmembrane domains. We also tested the hypothesis that the charge at position 53 is important for agonist activation by measuring the glycine response of wild type (WT) and E53C GlyRs exposed to methanethiosulfonate reagents. As earlier, E53C GlyRs have a significantly higher EC(50) than WT GlyRs. Exposing E53C GlyRs to the negatively charged 2-sulfonatoethyl methanethiosulfonate, but not neutral 2-hydroxyethyl methanethiosulfonate, positively charged 2-aminoethyl methanethiosulfonate, or 2-trimethylammonioethyl methanethiosulfonate, decreased the glycine EC(50) to resemble WT GlyR responses. Exposure to these reagents did not significantly alter the glycine EC(50) for WT GlyRs. The latter findings suggest that the negative charge at position 53 is important for activation of GlyRs through its interaction with positive charge(s) in other neighboring agonist activation elements. Collectively, the findings provide the basis for a refined molecular model of alpha1GlyRs based on the recent x-ray structure of a prokaryotic pentameric ligand-gated ion channel and offer insight into the structure-function relationships in GlyRs and possibly other ligand-gated ion channels.  相似文献   

7.
Abstract: Molecular mechanisms of zinc potentiation were investigated in recombinant human α1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [3H]strychnine binding assays. In the wild-type (WT) GlyR, 1 µ M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1–M2 and M2–M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2–M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.  相似文献   

8.
V Schmieden  J Kuhse    H Betz 《The EMBO journal》1992,11(6):2025-2032
The inhibitory glycine receptor (GlyR) is a pentameric chloride channel protein which mediates postsynaptic inhibition in the mammalian central nervous system. In spinal cord, different GlyR isoforms originate from the sequential expression of developmentally regulated variants of the ligand binding alpha subunit. Here, neonatal alpha 2 and adult alpha 1 subunits are shown to generate GlyRs with distinct agonist activation profiles upon heterologous expression in Xenopus oocytes. Whereas alpha 1 receptors are efficiently gated by beta-alanine and taurine, alpha 2 GlyRs show only a low relative response to these agonists, which also display a reduced sensitivity to inhibition by the glycinergic antagonist strychnine. Construction of an alpha 2/alpha 1 subunit chimera and site-directed mutagenesis of the extracellular region of the alpha 1 sequence identified amino acid positions 111 and 212 as important determinants of taurine activation. Our results indicate the existence of distinct subsites for agonists on alpha 1 and alpha 2 GlyRs and suggest that the ligand binding pocket of these receptor proteins is formed from discontinuous domains of their extracellular region.  相似文献   

9.
The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha(1) homomeric and alpha(1)beta heteromeric glycine receptors (GlyRs). At low (0.03 microm) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (> or =0.03 microm) concentrations it irreversibly activated both alpha(1) homomeric and alpha(1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin. Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.  相似文献   

10.
The inhibitory glycine receptor (GlyR) in developing spinal neurones is internalized efficiently upon antagonist inhibition. Here we used surface labeling combined with affinity purification to show that homopentameric alpha1 GlyRs generated in Xenopus oocytes are proteolytically nicked into fragments of 35 and 13 kDa upon prolonged incubation. Nicked GlyRs do not exist at the cell surface, indicating that proteolysis occurs exclusively in the endocytotic pathway. Consistent with this interpretation, elevation of the lysosomal pH, but not the proteasome inhibitor lactacystin, prevents GlyR cleavage. Prior to internalization, alpha1 GlyRs are conjugated extensively with ubiquitin in the plasma membrane. Our results are consistent with ubiquitination regulating the endocytosis and subsequent proteolysis of GlyRs residing in the plasma membrane. Ubiquitin-conjugating enzymes thus may have a crucial role in synaptic plasticity by determining postsynaptic receptor numbers.  相似文献   

11.
Zn(2+) is thought to modulate neurotransmission by affecting currents mediated by ligand-gated ion channels and transmitter reuptake by Na(+)-dependent transporter systems. Here, we examined the in vivo relevance of Zn(2+) neuromodulation by producing knockin mice carrying the mutation D80A in the glycine receptor (GlyR) alpha1 subunit gene (Glra1). This substitution selectively eliminates the potentiating effect of Zn(2+) on GlyR currents. Mice homozygous for Glra1(D80A) develop a severe neuromotor phenotype postnatally that resembles forms of human hyperekplexia (startle disease) caused by mutations in GlyR genes. In spinal neurons and brainstem slices from Glra1(D80A) mice, GlyR expression, synaptic localization, and basal glycinergic transmission were normal; however, potentiation of spontaneous glycinergic currents by Zn(2+) was significantly impaired. Thus, the hyperekplexia phenotype of Glra1(D80A) mice is due to the loss of Zn(2+) potentiation of alpha1 subunit containing GlyRs, indicating that synaptic Zn(2+) is essential for proper in vivo functioning of glycinergic neurotransmission.  相似文献   

12.
The inhibitory glycine receptor (GlyR) is a ligand-gated chloride channel protein which displays developmental heterogeneity in the mammalian central nervous system. Here we describe 2 novel cDNA variants of the rat GlyR alpha 2 subunit and demonstrate that alternative splicing generates these 2 isoforms. The deduced protein sequences (alpha 2A and alpha 2B) exhibit 99% identity with the previously characterized human alpha 2 subunit. In situ hybridization revealed expression of both alpha 2A and alpha 2B mRNAs in the prenatal rat brain, suggesting that these variant proteins may have a role in synaptogenesis. Heterologous expression in Xenopus oocytes showed that the more abundantly expressed alpha 2A subunit forms strychnine-sensitive ion channels which resemble human alpha 2 subunit GlyRs in their electrophysiological properties.  相似文献   

13.
The divalent cation Zn(2+) is a potent potentiator at the strychnine-sensitive glycine receptor (GlyR). This occurs at nanomolar concentrations, which are the predicted endogenous levels of extracellular neuronal Zn(2+). Using structural modeling and functional mutagenesis, we have identified the molecular basis for the elusive Zn(2+) potentiation site on GlyRs and account for the differential sensitivity of GlyR alpha(1) and GlyR alpha(2) to Zn(2+) potentiation. In addition, juxtaposed to this Zn(2+) site, which is located externally on the N-terminal domain of the alpha subunit, another residue was identified in the nearby Cys loop, a region that is critical for receptor gating in all Cys loop ligand-gated ion channels. This residue acted as a key control element in the allosteric transduction pathway for Zn(2+) potentiation, enabling either potentiation or overt inhibition of receptor activation depending upon the moiety resident at this location. Overall, we propose that Zn(2+) binds to a site on the extracellular outer face of the GlyR alpha subunit and exerts its positive allosteric effect via an interaction with the Cys loop to increase the efficacy of glycine receptor gating.  相似文献   

14.
Glycine receptors (GlyRs) are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs) have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA) are positive modulators of α(1), α(2) and α(3) GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly) potentiate α(1) GlyRs but inhibit α(2) and α(3). This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM) region 2 and intracellular lysine 385 determine the positive modulation of α(1) GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2) converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1) GlyRs, without affecting inhibition of α(2) and α(3). Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.  相似文献   

15.
Contrary to its effect on the gamma-aminobutyric acid type A and C receptors, picrotoxin antagonism of the alpha1 homomeric glycine receptors (GlyRs) has been shown to be non-use-dependent and nonselective between the picrotoxin components picrotoxinin and picrotin. Picrotoxin antagonism of the embryonic alpha2 homomeric GlyR is known to be use-dependent and reflects a channel-blocking mechanism, but the selectivity of picrotoxin antagonism of the embryonic alpha2 homomeric GlyRs between picrotoxinin and picrotin is unknown. Hence, we used the patch clamp recording technique in the outside-out configuration to investigate, at the single channel level, the mechanism of picrotin- and picrotoxinin-induced inhibition of currents, which were evoked by the activation of alpha2 homomeric GlyRs stably transfected into Chinese hamster ovary cells. Although both picrotoxinin and picrotin inhibited glycine-evoked outside-out currents, picrotin had a 30 times higher IC50 than picrotoxinin. Picrotin-evoked inhibition displayed voltage dependence, whereas picrotoxinin did not. Picrotoxinin and picrotin decreased the mean open time of the channel in a concentration-dependent manner, indicating that these picrotoxin components can bind to the receptor in its open state. When picrotin and glycine were co-applied, a large rebound current was observed at the end of the application. This rebound current was considerably smaller when picrotoxinin and glycine were co-applied. Both picrotin and picrotoxinin were unable to bind to the unbound conformation of the receptor, but both could be trapped at their binding site when the channel closed during glycine dissociation. Our data indicate that picrotoxinin and picrotin are not equivalent in blocking alpha2 homomeric GlyR.  相似文献   

16.
The divalent cation Zn2+ has been shown to regulate inhibitory neurotransmission in the mammalian CNS by affecting the activation of the strychnine-sensitive glycine receptor (GlyR). In spinal neurons and cells expressing recombinant GlyRs, low micromolar (10 µM) have an inhibitory effect. Mutational studies have localized the Zn2+ binding sites mediating allosteric potentiation and inhibition of GlyRs in distinct regions of the N-terminal extracellular domain of the GlyR α-subunits. Here, we examined the ZZn2+ sensitivity of different mutations within the agonist binding site of the homomeric α1-subunit GlyR upon heterologous expression in Xenopus oocytes. This revealed that 6 substitutions within the ligand-binding pocket result in a total loss of Zn2+ inhibition. Furthermore, substitution of the positively charged residues arginine 65 and arginine 131 by alanine (α1R65A, α1R131A), or of the aromatic residue phenylalanine 207 by histidine (α1F207H), converted the α1 GlyR into a chloride channel that was activated by Zn2+ alone. Dose-response analysis of the α1F207H GlyR disclosed an EC50 value of 1.2 µM for Zn2+ activation; concomitantly the apparent glycine affinity was 1000-fold reduced. Thus, single point mutations within the agonist-binding site of the α1 subunit convert the inhibitory GlyR from a glycine-gated into a selectively Zn2+-activated chloride channel. This might be exploited for the design of metal-specific biosensors by modeling-assisted mutagenesis.  相似文献   

17.
It is well known that the convulsant alkaloid picrotoxin (PTX) can inhibit neuronal gamma-aminobutyric acid (GABA) and homomeric glycine receptors (GlyR). However, the mechanism for PTX block of alpha(2) homomeric GlyR is still unclear compared with that of alpha(1) homomeric GlyR, GABA(A), and GABA(C) receptors. Furthermore, PTX effects on GlyR kinetics have been poorly explored at the single-channel level. Hence, we used the patch-clamp technique in the outside-out configuration to investigate the mechanism of PTX suppression of currents carried by alpha(2) homomeric GlyRs stably transfected into Chinese hamster ovary cells. PTX inhibited the alpha(2) homomeric GlyR current elicited by glycine in a concentration-dependent and voltage-independent manner. Both competitive and noncompetitive mechanisms were observed. PTX decreased the mean open time of the GlyR channel in a concentration-dependent manner, suggesting that PTX can block channel openings and bind to the receptor in the open channel conformation. When PTX and glycine were co-applied, a small rebound current was observed during drug washout. Application of PTX during the deactivation phase of glycine-induced currents eliminated the rebound current and accelerated the deactivation time course in a concentration-dependent manner. PTX could not bind to the unbound conformation of GlyR, but could be trapped at its binding site when the channel closed during glycine dissociation. Based on these observations, we propose a kinetic Markov model in which PTX binds to the alpha(2) homomeric GlyR in both the open channel state and the fully liganded closed state. Our data suggest a new allosteric mechanism for PTX inhibition of wild-type homomeric alpha(2) GlyR.  相似文献   

18.
Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha1, alpha2, alpha1beta and alpha2beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha2beta GlyR relative to the alpha2 GlyR but not in the alpha1beta GlyR relative to the alpha1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha2beta GlyR was transferred to the alpha1beta GlyR by the G2'A (alpha1 to alpha2 subunit) substitution. In addition, the alpha1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.  相似文献   

19.
In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.  相似文献   

20.
Ligand-gated ion channel receptors mediate neuronal inhibition or excitation depending on their ion charge selectivity. An investigation into the determinants of ion charge selectivity of the anion-selective alpha1 homomeric glycine receptor (alpha1 glycine receptor [GlyR]) was undertaken using point mutations to residues lining the extra- and intracellular ends of the ion channel. Five mutant GlyRs were studied. A single substitution at the intracellular mouth of the channel (A-1'E GlyR) was sufficient to convert the channels to select cations over anions with P(Cl)/P(Na) = 0.34. This result delimits the selectivity filter and provides evidence that electrostatic interactions between permeating ions and pore residues are a critical factor in ion charge selectivity. The P-2'Delta mutant GlyR retained its anion selectivity (P(Cl)/P(Na) = 3.81), but it was much reduced compared with the wild-type (WT) GlyR (P(Cl)/P(Na) = 27.9). When the A-1'E and the P-2'Delta mutations were combined (selectivity double mutant [SDM] GlyR), the relative cation permeability was enhanced (P(Cl)/P(Na) = 0.13). The SDM GlyR was also Ca(2+) permeable (P(Ca)/P(Na) = 0.29). Neutralizing the extracellular mouth of the SDM GlyR ion channel (SDM+R19'A GlyR) produced a more Ca(2+)-permeable channel (P(Ca)/P(Na) = 0.73), without drastically altering monovalent charge selectivity (P(Cl)/P(Na) = 0.23). The SDM+R19'E GlyR, which introduces a negatively charged ring at the extracellular mouth of the channel, further enhanced Ca(2+) permeability (P(Ca)/P(Na) = 0.92), with little effect on monovalent selectivity (P(Cl)/P(Na) = 0.19). Estimates of the minimum pore diameter of the A-1'E, SDM, SDM+R19'A, and SDM+R19'E GlyRs revealed that these pores are larger than the alpha1 GlyR, with the SDM-based GlyRs being comparable in diameter to the cation-selective nicotinic acetylcholine receptors. This result provides evidence that the diameter of the ion channel is also an important factor in ion charge selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号