首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed and evaluated methods of culturing defined stromal and epithelial populations of normal human breast cells. These cell populations were used to generate radiation dose/survival curves. The epithelial cell population required specific hormones, growth factors, and conditioned media, as well as fibroblast feeder layers for clonal growth. Stromal cells grew well in a less complex medium. The stromal and parenchymal cell populations of the normal human breast were characterized by light and electron microscopy, immunohistochemical human fibronectin staining, gamma glutamyltranspeptidase histochemical staining, and cell sizing. Survival curves were generated using cells from four donors. The average D0 for epithelial cells was 122 cGy, with an average n value of 2.4. The average D0 and n values for stromal cells were 114 cGy and 2.0. The survival of human breast epithelial cells is compared to that of the cells of the rat mammary gland. The D0 values of both species are essentially the same, while the n value for human epithelial cells is lower. This difference in the n value may be a species specific response to radiation, or may merely reflect a difference in the two assay systems used to generate the survival curves.  相似文献   

2.
The dependence of relative biological effectiveness (RBE) on photon energy is a topic of extensive discussions. The increasing amount of in vitro data in the low-energy region indicates this to be a complex dependence that is influenced by the end point and cell line studied. In the present investigation, the RBE of 10 kV X rays (W anode) was determined relative to 200 kV X rays (W anode, 0.5 mm copper filter) for cell survival in the dose range 1-10 Gy and for induction of micronuclei in the range 0.5-3.6 Gy for MCF-12A human mammary epithelial cells. The RBE for cell survival was found to increase with decreasing dose, being 1.21+/-0.03 at 10% survival. Considerably higher values were obtained for micronucleus induction, where the RBE(M) obtained from the ratio of the linear coefficients of the dose-effect curves was 2.6+/-0.4 for the fraction of binucleated cells with micronuclei and 4.1+/-1.0 for the number of micronuclei per binucleated cell. These values, together with our previous data, support a monotonic increase in RBE with decreasing photon energy down to the mean energy of 7.3 keV used in the present study.  相似文献   

3.
The genotoxicity of alpha particles in human embryonic skin fibroblasts   总被引:1,自引:0,他引:1  
Cell inactivation and induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus have been measured in cultured human fibroblasts (GM10) exposed to alpha particles from 238Pu (LET at the cell surface was 100 keV/microns) and 250 kVp X rays. The survival curves resulting from exposure to alpha particles are exponential. The mean lethal dose, D0, is approximately 1.3 Gy for X rays and 0.25 Gy for alpha particles. As a function of radiation dose, mutation induction at the HGPRT locus was linear for alpha particles whereas the X-ray-induced mutation data were better fitted by a quadratic function. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in cells exposed to alpha particles than to X rays.  相似文献   

4.
The radiosensitivity of spermatogonial stem cells to X rays was determined in the various stages of the cycle of the seminiferous epithelium of the CBA mouse. The numbers of undifferentiated spermatogonia present 10 days after graded doses of X rays (0.5-8.0 Gy) were taken as a measure of stem cell survival. Dose-response relationships were generated for each stage of the epithelial cycle by counting spermatogonial numbers and also by using the repopulation index method. Spermatogonial stem cells were found to be most sensitive to X rays during quiescence (stages IV-VII) and most resistant during active proliferation (stages IX-II). The D0 for X rays varied from 1.0 Gy for quiescent spermatogonial stem cells to 2.4 Gy for actively proliferating stem cells. In most epithelial stages the dose-response curves showed no shoulder in the low-dose region.  相似文献   

5.
Human and rodent cells proficient and deficient in non-homologous end joining (NHEJ) were irradiated with X rays, 70 keV/microm carbon ions, and 200 keV/microm iron ions, and the biological effects on these cells were compared. For wild-type CHO and normal human fibroblast (HFL III) cells, exposure to iron ions yielded the lowest cell survival, followed by carbon ions and then X rays. NHEJ-deficient xrs6 (a Ku80 mutant of CHO) and 180BR human fibroblast (DNA ligase IV mutant) cells showed similar cell survival for X and carbon-ion irradiation (RBE = approximately 1.0). This phenotype is likely to result from a defective NHEJ protein because xrs6-hamKu80 cells (xrs6 cells corrected with the wild-type KU80 gene) exhibited the wild-type response. At doses higher than 1 Gy, NHEJ-defective cells showed a lower level of survival with iron ions than with carbon ions or X rays, possibly due to inactivation of a radioresistant subpopulation. The G(1) premature chromosome condensation (PCC) assay with HFL III cells revealed LET-dependent impairment of repair of chromosome breaks. Additionally, iron-ion radiation induced non-repairable chromosome breaks not observed with carbon ions or X rays. PCC studies with 180BR cells indicated that the repair kinetics after exposure to carbon and iron ions behaved similarly for the first 6 h, but after 24 h the curve for carbon ions approached that for X rays, while the curve for iron ions remained high. These chromosome data reflect the existence of a slow NHEJ repair phase and severe biological damage induced by iron ions. The auto-phosphorylation of DNA-dependent protein kinase catalytic subunits (DNA-PKcs), an essential NHEJ step, was delayed significantly by high-LET carbon- and iron-ion radiation compared to X rays. This delay was further emphasized in NHEJ-defective 180BR cells. Our results indicate that high-LET radiation induces complex DNA damage that is not easily repaired or is not repaired by NHEJ even at low radiation doses such as 2 Gy.  相似文献   

6.
The incorporation of iododeoxyuridine (IdUrd) into Chinese hamster cells was examined as a possible radiosensitizer for fission spectrum neutrons. Dose-response curves comparing both X rays and neutrons in the same cell line with the same IdUrd replacement showed a similar radiation enhancement for IdUrd incorporation. Enhancement ratios at the 1% survival level were 1.8 for X rays and 1.5 for fission spectrum neutrons. While the mechanism of this enhancement in the response for fission neutron radiation is unclear, these positive data should support further exploration to determine if halogenated pyrimidine incorporation results in sensitization for neutron energies employed in therapy.  相似文献   

7.
The growth parameters and radiosensitivity of normal rat intestinal epithelial cells, IEC-17, were studied. The cells were cultured by standard methods and exposed to an array of doses (1-12 Gy) of 250 kVp X rays. The survival curves generated exhibited no initial shoulder and were bimodal. The Do of the first component was about 0.2 Gy and the second component. 5.0 Gy. The ability of this cell line to repair sublethal lesions was examined by fractionation studies; repair was completed within 60 min after the first dose. When Chinese hamster ovary (CHO) cells were grown under the same conditions used for the IEC-17 cells and then irradiated with single doses, a typical survival curve with a Do of 1.4 Gy was obtained. The survival curves obtained for the IEC-17 cell line are consistent with the response of a morphologically distinct single population containing two functionally separate types of cells.  相似文献   

8.
Survival parameters and immediate DNA damage induced by 60Co gamma rays, 50-kVp X rays, and Janus fission-spectrum neutrons in human epithelial P3 cells (derived from an embryonic teratocarcinoma) are compared with those for Chinese hamster lung V79 cells. DNA damage caused by X and gamma irradiation, measured by alkaline elution methods, is the same in both cell types, whereas the P3 cells are about two times more sensitive (as measured by Do ratios of the final survival curve slope) to the lethal effects of these radiations than are the V79 cells. Human P3 cells are also more sensitive to the lethal effects of fission-spectrum neutrons than V79 cells. Survival experiments with split radiation doses and hypertonic salt treatment indicate that both P3 cells and V79 cells can recover from radiation-induced damage efficiently.  相似文献   

9.
The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.  相似文献   

10.
The cellular sensitivity to X rays (200 kV, 16 mA) and UV radiation (254 nm) was examined in lymphocytes from three groups of patients with multiple epidermal malignant tumors, selected by their clinical history of carcinogenesis. Eight patients previously exposed to low energy ionizing radiation (less than or equal to 12 kV) had an increased cellular sensitivity to UV radiation as well as X rays compared with 24 age and sex matched controls. This indicates the existence of a cellular cross-sensitivity to UV radiation and ionizing radiation not previously established for human cells. In contrast six patients previously exposed to high energy ionizing radiation (between 25 and 170 kV) had normal cellular response to both UV radiation and X rays, indicating a different biologic effect of low and high energy ionizing radiation. In the third group of patients, previously exposed to therapeutic UV radiation/excess sunlight, the lymphocytes had a normal response to X rays, but an increased sensitivity to UV radiation. The possibility of evaluating the individual risk at radiation exposure is suggested.  相似文献   

11.
Measurements were made of clonogenic cell survival in rat rhabdomyosarcoma tumors as a function of time following in situ irradiation with single or fractionated doses of 225-kVp X rays or with 557-MeV/u neon ions in the distal position of a 4-cm extended-peak ionization region. Single doses of 20 Gy of X rays or 7 Gy of peak neon ions reduced the initial surviving fraction to approximately 0.025 for each modality. Daily fractionated doses (four fractions in 3 days) of either peak neon ions (1.75 Gy per fraction) or X rays (6 Gy per fraction) achieved a cell survival of approximately 0.02-0.03 after the fourth dose of radiation. In the single-dose experiments, significant 5- and 10-fold decreases in the fraction of clonogenic cells were observed between the third and fourth days after irradiation with peak neon ions and X rays, respectively. After the sixth day postirradiation, the residual clonogenic cells exhibited a rapid burst of proliferation leading to doubling times for the surviving cell fractions of approximately 1.5 days. Radiation-induced growth delay was consistent with the cellular repopulation dynamics. In the fractionated-dose experiments with both radiation modalities, a large delayed decrease in cell survival was observed at 1-3 days after completion of the fractionated-dose schedule. Cellular repopulation was consistent with postirradiation tumor volume regression and regrowth for both radiation modalities. The extent of decrease in survival following the four-fraction radiation schedule was approximately two times greater in X-irradiated than in neon-ion-irradiated tumors that produced the same survival level immediately after the fourth dose. Mechanisms underlying the marked reduction in cell survival 3-4 days postirradiation are discussed, including the possible role of a toxic host cell response against the irradiated tumor cells.  相似文献   

12.
A specific locus mutagenesis assay using primary cultures of human mammary epithelial cells has been developed. A mutation frequency at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus of approximately 2 X 10(-5) mutations per surviving cell per gray of ionizing radiation was estimated in these cells.  相似文献   

13.
Plateau-phase V79 cells were exposed sequentially to fast neutrons and gamma rays. A dose-dependent reduction in the shoulder width of the gamma-ray survival curve was observed after preexposure of cells to neutrons. A similar effect was demonstrated on the neutron survival curve when cells were preirradiated with gamma rays. Treatment of cells with 150 microM beta-araA after either gamma or neutron irradiation reduced primarily the shoulder of the survival curve. When beta-araA was given to the cells after exposure to mixed radiation modalities, survival curves similar to those observed after exposure to a single radiation modality and treatment with beta-araA were obtained. The kinetics of loss of the interaction observed after exposure of cells to gamma rays following neutron irradiation was similar to the kinetics of loss of sensitivity to beta-araA (T1/2 = 1 h) measured by delaying drug administration after exposure to gamma rays. The results suggest that the PLD expressed by beta-araA is at least partly involved in the interactive effect observed after combined exposure of plateau-phase V79 cells to neutrons and gamma rays.  相似文献   

14.
To compare the genotoxic effects of high-LET ionizing radiation to those of low-LET radiation, we investigated the responses of human lymphoblastoid cells to DNA damage TK6 after treatment with either low-LET X rays or high-LET iron ions (1000 keV/microm). A highly localized distribution of gammaH2AX/RAD51 foci was observed in the nuclei of cells irradiated with iron ions, in sharp contrast to cells exposed to X rays, where the distribution of foci was much more uniform. This implied the occurrence of a relatively high frequency of closely spaced double-strand breaks, i.e. clustered DNA damage, after iron-ion exposure. Despite the well-established notion that clustered DNA damage is refractory to repair compared to isolated DNA lesions, there were no significant differences in the levels of clonogenic survival and apoptosis between cells treated with iron ions or X rays. Strikingly, however, cells accumulated in G(2)/M phase to a much lesser extent after iron-ion exposure than after X-ray exposure. This differential accumulation could be attributed to a much slower evacuation of the S-phase compartment in the case of cells irradiated with iron ions. Taken together, our results indicate that, relative to the situation for low-LET X rays, exposure to high-LET iron ions results in a substantially greater inhibition of S-phase progression as a result of a higher frequency of DNA replication-blocking clustered DNA damage.  相似文献   

15.
Preclinical studies of porfiromycin as an adjunct to radiotherapy   总被引:1,自引:0,他引:1  
The bioreductive alkylating agent porfiromycin (POR) is more toxic to EMT6 cells that are hypoxic at the time of treatment than to aerobic cells. The toxicity of POR to hypoxic EMT6 cells in vitro was similar to that of mitomycin C (MC): the aerobic toxicity of POR was considerably less than that of MC. Treatment of cells in vitro with POR before and during irradiation did not sensitize either hypoxic or aerobic cells to X rays; instead, only additive cytotoxicity was produced. In contrast, treatment of solid EMT6 tumors in vivo with POR plus radiation produced supra-additive cytotoxicity, as assessed by analyses of the complete dose-response curves for the killing of tumor cells by radiation alone or by POR alone. The supra-additivity of the combination regimens appeared to reflect the preferential killing by each agent of those tumor cells which were in an environment conferring resistance to the other agent. In contrast, combinations of POR and X rays produced only additive cytotoxicities to marrow CFU-GM. Supra-additive antineoplastic effects were obtained at doses of POR which produced little hematologic or other host toxicity. The complementary cytotoxicities of radiation and POR to cells in different microenvironments in solid tumors and the absence of a similar effect in normal tissue make optimized regimens combining radiotherapy and POR unusually promising for the treatment of solid tumors.  相似文献   

16.
The eyes of Sprague-Dawley rats were irradiated with doses of 2.5-10 Gy 250-kVp X rays, 1.25-2.25 Gy fission-spectrum neutrons (approximately 0.85 MeV), or 0.1-2.0 Gy 600-MeV/A 56Fe particles. Lens opacifications were evaluated for 51-61 weeks following X and neutron irradiations and for 87 weeks following X and 56Fe-particle irradiations. Average stage of opacification was determined relative to time after irradiation, and the time required for 50% of the irradiated lenses to achieve various stages (T50) was determined as a function of radiation dose. Data from two experiments were combined in dose-effect curves as T50 experimental values taken as percentages of the respective T50 control values (T50-% control). Simple exponential curves best describe dose responsiveness for both high-LET radiations. For X rays, a shallow dose-effect relationship (shoulder) up to 4.5 Gy was followed at higher doses by a steeper exponential dose-effect relationship. As a consequence, RBE values for the high-LET radiations are dose dependent. Dose-effect curves for cataracts were compared to those for mitotic abnormalities observed when quiescent lens epithelial cells were stimulated mechanically to proliferate at various intervals after irradiation. Neutrons were about 1.6-1.8 times more effective than 56Fe particles for inducing both cataracts and mitotic abnormalities. For stage 1 and 2 cataracts, the X-ray Dq was 10-fold greater and the D0 was similar to those for mitotic abnormalities initially expressed after irradiation.  相似文献   

17.
Primary monolayer cultures of normal and malignant human mammary epithelial cells were tested for fibronectin by indirect immunofluorescence using antisera specific for fibronectin. This protein was not detectable on either the normal or malignant epithelial cells. Similar results were obtained for normal and malignant mouse mammary epithelial cell cultures. Control normal and transformed fibroblasts exhibited the expected result: the normal cells were positive and the transformed cells were negative. With the use of supernatant fluids from the same cultures or an agar-overlay assay on viable cells, high levels of plasminogen-dependent fibrinolytic activity were detectable in both the normal and malignant mammary cells. Thus, two characteristics that distinguish normal from transformed fibroblasts do not serve as markers of malignancy in mammary epithelial/carcinoma systems.  相似文献   

18.
The effect of ionizing radiation on the expression of two DNA-damage-inducible genes, designated gadd45 and gadd153, was examined in cultured human cells. These genes have previously been shown to be strongly and coordinately induced by UV radiation and alkylating agents in human and hamster cells. We found that the gadd45 but not the gadd153 gene is strongly induced by X rays in human cells. The level of gadd45 mRNA increased rapidly after X rays at doses as low as 2 Gy. After 20 Gy of X rays, gadd45 induction, as measured by increased amounts of mRNA, was similar to that produced by the most effective dose of the alkylating agent methyl methanesulfonate. No induction was seen after treatment of either human or hamster cells with 12-O-tetradecanoylphorbol-13-acetate, a known activator of protein kinase C (PKC). Therefore, gadd45 represents the only known mammalian X-ray-responsive gene whose induction is not mediated by PKC. However, induction was blocked by the protein kinase inhibitor H7, indicating that induction is mediated by some other kinase(s). Sequence analysis of human and hamster cDNA clones demonstrated that this gene has been highly conserved and encodes a novel 165-amino-acid polypeptide which is 96% identical in the two species. This gene was localized to the short arm of human chromosome 1 between p12 and p34. When induction in lymphoblast lines from four normal individuals was compared with that in lines from four patients with ataxia telangiectasia, induction by X rays of gadd45 mRNA was less in the cell lines from this cancer-prone radiosensitive disorder. Our results provide evidence for the existence of an X-ray stress response in human cells which is independent of PKC and which is abnormal in taxia telangiectasia.  相似文献   

19.
The in vitro radiation sensitivity of CFU-Meg isolated from human placental and umbilical cord blood was evaluated in plasma clot cultures stimulated by recombinant human cytokines, including thrombopoietin, the FLT3 ligand (FLT3LG), interleukin-3, interleukin-11 and stem cell factor. The CD34(+) cells were irradiated with X rays at a dose rate of 73 cGy/ min. The megakaryocyte colonies were identified by using an FITC-conjugated antibody to glycoprotein IIbIIIa and were classified into two groups based on colony size: large colonies (immature CFU-Meg) and small colonies (mature CFU-Meg). Treatment with thrombopoietin alone or in combination with FLT3LG and/or interleukin-11 gave exponential radiation survival curves (D(0) for immature CFU-Meg = 56-77 cGy, D(0) for mature CFU-Meg = 86 cGy-1.12 Gy), while marked shoulders were observed on the survival curves for colonies supported by the combination of thrombopoietin, interleukin-3 and stem cell factor (D(0) for immature CFU-Meg = 89- 98 cGy; D(0) for mature CFU-Meg = 1. 25-1.31 Gy). Our results showed that the immature CFU-Meg were more radiosensitive than the mature CFU-Meg and that the combination of cytokines, including thrombopoietin, interleukin-3 and stem cell factor, affected the radiation sensitivity of CFU-Meg to the same extent as with thrombopoietin alone or in combination with FLT3LG and/or interleukin-11.  相似文献   

20.
Cook J 《Radiation research》2001,155(2):304-310
The cell cycle effects, alteration in radiation response, and inherent cytotoxicity of the metal chelators mimosine, desferrioxamine (DFO), N,N'-bis(o-hydroxybenzyl)-ethylenediamine-N,N'-diacetic acid (HBED), and deferiprone (L1) were studied in exponentially growing Chinese hamster V79 cells. Incubation of cells with 200-1000 microM mimosine for 12 h reduced clonogenic survival to 50-60%, while incubation for 24 h reduced survival further to 0.5%. Mimosine treatment resulted in cell cycle blocks at the G(1)/S-phase border and in S phase. Pulse labeling with 5-bromodeoxyuridine indicated that the S-phase cells ceased to actively replicate DNA after only 2 h of mimosine treatment and were unable to replicate DNA for extended periods. Treatment of V79 cells with 600 microM mimosine for 12 h resulted in radiosensitization, yielding a sensitizer enhancement ratio (SER) of 2.7 +/- 0.3 at the 10% survival level. To study the kinetics of the sensitization, V79 cells were incubated with mimosine for various times up to 12 h and irradiated with a single 10-Gy dose of X rays. It was found that the radiosensitization increased continually up to 8 h (from a 3- to a 100-fold difference in survival) and then reached a plateau after 8 h. Mimosine also equally radiosensitized human lung cancer cells having either a normal or mutated TP53 gene, suggesting a TP53-independent mechanism. To test whether iron binding by mimosine was responsible for the observed radiosensitization, additional experiments were performed using the iron chelators DFO, HBED and L1. V79 cells treated with 500 microM of these agents for 8 h followed by various doses of X rays gave SERs similar to that for mimosine (2.0-2.7). These studies indicate that metal chelators are potent radiosensitizers in V79 and human cells. Importantly, when the DFO was preloaded together with Fe(3+) [Fe(III)-DFO], the radiosensitizing effect was lost. These preliminary findings warrant further studies for the possible application of metal chelators as radiation sensitizers in radiation oncology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号