首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising in cross-sectional and longitudinal studies of different subject groups.  相似文献   

2.
In vivo 1H magnetic resonance spectroscopy (MRS) can be used to directly monitor brain ethanol. Previously, studies of human subjects have lead to the suggestion that the ethanol methyl 1H MRS signal intensity relates to tolerance to ethanol’s intoxicating effects. More recently, the ethanol 1H MRS signal intensity has been recognized to vary between brain gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) due to differences in T2 within these environments. The methods presented here extend ethanol MRS techniques to non-human primate subjects. Twelve monkeys were administered ethanol while sedated and positioned within a 3T MRI system. Chemical shift imaging (CSI) measurements were performed following intravenous infusion of 1 g/kg ethanol. Magnetic resonance imaging (MRI) data were also recorded for each monkey to provide volume fractions of GM, WM, and CSF for each CSI spectrum. To estimate co-variance of ethanol MRS intensity with GM, WM, and CSF volume fractions, the relative contribution of each tissue subtype was determined following corrections for radiofrequency pulse profile non-uniformity, chemical shift artifacts, and differences between the point spread function in the CSI data and the imaging data. The ethanol MRS intensity per unit blood ethanol concentration was found to differ between GM, WM, and CSF. Individual differences in MRS intensity were larger in GM than WM. This methodology demonstrates the feasibility of ethanol MRS experiments and analysis in non-human primate subjects, and suggests GM may be a site of significant variation in ethanol MRS intensity between individuals.  相似文献   

3.
The source of inter-subject variability and the influence of age and gender on morphometric characteristics of the spinal cord, such as the total cross-sectional area (TCA), the gray matter (GM) and white matter (WM) areas, currently remain under investigation. Understanding the effect of covariates such as age, gender, brain volumes, and skull- and vertebra-derived metrics on cervical and thoracic spinal cord TCA and GM areas in healthy subjects would be fundamental for exploring compartment specific changes in neurological diseases affecting the spinal cord. Using Magnetic Resonance Imaging at 3T we investigated 32 healthy subjects using a 2D phase sensitive inversion recovery sequence and we measured TCA, GM and WM areas at 4 cervical and thoracic levels of the spinal cord. We assessed age and gender relationships of cord measures and explored associations between cord measures and a) brain volumes and b) skull- and vertebra-derived metrics. Age and gender had a significant effect on TCA, WM and GM areas (with women and elderly having smaller values than men and younger people respectively), but not on the GM area/TCA ratio. The total intracranial volume and C3 vertebra dimensions showed the highest correlations with cord measures. When used in multi-regression models, they reduced cord areas group variability by approximately a third. Age and gender influences on cord measures and normalization strategies here presented might be of use in the study of compartment specific changes in various neurological diseases affecting the spinal cord.  相似文献   

4.
Our goal in this study was to compare magnetic resonance images and volumes of brain structures obtained alive versus postmortem of California sea lions Zalophus californianus exhibiting clinical signs of domoic acid (DA) toxicosis and those exhibiting normal behavior. Proton density-(PD) and T2-weighted images of postmortem-intact brains, up to 48 h after death, provided similar quality to images acquired from live sea lions. Volumes of gray matter (GM) and white matter (WM) of the cerebral hemispheres were similar to volumes calculated from images acquired when the sea lions were alive. However, cerebrospinal fluid (CSF) volumes decreased due to leakage. Hippocampal volumes from postmortem-intact images were useful for diagnosing unilateral and bilateral atrophy, consequences of DA toxicosis. These volumes were similar to the volumes in the live sea lion studies, up to 48 h postmortem. Imaging formalin-fixed brains provided some information on brain structure; however, images of the hippocampus and surrounding structures were of poorer quality compared to the images acquired alive and postmortem-intact. Despite these issues, volumes of cerebral GM and WM, as well as the hippocampus, were similar to volumes calculated from images of live sea lions and sufficient to diagnose hippocampal atrophy. Thus, postmortem MRI scanning (either intact or formalin-fixed) with volumetric analysis can be used to investigate the acute, chronic and possible developmental effects of DA on the brain of California sea lions.  相似文献   

5.
Substance use during pregnancy and the postpartum period may have significant implications for both mother and the developing child. However, the neurobiological basis of the impact of substance use on parenting is less well understood. Here, we examined the impact of maternal substance use on cortical gray matter (GM) and white matter (WM) volumes and whether this was associated with individual differences in motivational systems of behavioral activation and inhibition. Mothers were included in the substance-using group if any addictive substance was used during pregnancy and/or in the immediate postpartum period (within 3 months of delivery). GM volume was reduced in substance-using mothers compared to non-substance-using mothers, particularly in frontal brain regions. In substance-using mothers, we also found that frontal GM was negatively correlated with levels of behavioral activation (i.e., the motivation to approach rewarding stimuli). This effect was absent in non-substance-using mothers. Taken together, these findings indicate a reduction in GM volume is associated with substance use and that frontal GM volumetric differences may be related to approach motivation in substance-using mothers.  相似文献   

6.

Background

There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM) and white matter (WM) of the brain due to microgravity.

Method

Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR) for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain.

Results

We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA) changes were also observed in multiple WM tracts.

Conclusion

These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition.  相似文献   

7.
LJ Zhang  R Qi  J Zhong  Q Xu  G Zheng  GM Lu 《PloS one》2012,7(8):e42824

Purpose

To evaluate the effect of hepatic encephalopathy (HE), hepatic failure, and portosystemic shunt (PS) on the brain volume alteration in cirrhotic patients with MRI voxel-based morphometry (VBM).

Methods

Sixty cirrhotic patients (overt HE [OHE], n = 11; minimal HE [MHE], n = 19; non HE [nHE], n = 30) including 12 with pre- and post-transjugular intrahepatic portosystemic shunt (TIPS) scanning and 40 healthy controls were recruited. Neuropsychological and laboratory tests were performed in all patients. VBM was analyzed with ANOVA test among 4 groups, and t-tests for patients with different hepatic function, PS scores, and TIPS. Multiple linear regression was performed to investigate the effect of venous blood ammonia levels, Child-Pugh scores, and PS on the brain volumes in all patients.

Results

Cirrhotic patients exhibited decreased volume in many areas of gray matter (GM), increased volume in thalamus, and increased whiter matter (WM) volume, with the extent of affected brain volume greater in HE patients than nHE patients. Hepatic failure also resulted in decreased GM volume. Patients with high PS scores and TIPS displayed decreased GM and increased WM volume in some regions. Post-TIPS patients displayed increased GM volume in the thalamus. Multiple covariate regression results suggested that Child-Pugh score was a major factor to affect GM volume, while PS mainly affected WM volume.

Conclusion

Brain structure abnormalities appeared bilaterally symmetrical in cirrhotic patients, and the impairment was more extensive in HE patients than those without HE. Increased thalamus volume was not associated with HE progression. Hepatic failure and PS altered cirrhotic patients’ brain structure.  相似文献   

8.
Recent genome-wide association studies of schizophrenia reported a novel risk variant, rs2312147 at vaccinia-related kinase 2 gene (VRK2), in multiple Asian and European samples. However, its effect on the brain structure in schizophrenia is little known. We analyzed the brain structure of 36 schizophrenia patients and 18 healthy subjects with regard to rs2312147 genotype groups. Brain magnetic resonance scans for gray matter (GM) and white matter (WM) analysis, and genotype analysis for VRK2 rs2312147, were conducted. The Positive and Negative Syndrome Scale and the Digit Symbol Test were assessed for schizophrenia patients. There was no significant difference in either GM volume or WM connectivity with regard to rs2312147 genotype in healthy subjects. In contrast, we found significant differences in the WM connectivity between rs2312147 CC and CT/TT genotype groups of schizophrenia patients. The related brain areas included the splenium of corpus callosum, the left occipital lobe WM, the internal capsule (left anterior limb and right retrolenticular part), the bilateral temporal lobe WM, the left fornix/stria terminalis, the left cingulate gyrus WM, and the left parietal lobe WM. Voxelwise correlation analysis revealed that the Digit Symbol Test scores (age corrected) correlated with the fractional anisotropy in WM tracts that previously showed significant group differences between the CT/TT and CC genotypes in the rs2312147 CT/TT genotype group, while no significant correlation was found in the CC genotype group. Our data may provide evidence for the effect of VRK2 on WM connectivity in patients with schizophrenia.  相似文献   

9.
Neuroimaging studies have linked the methionine (Met) allele of the brain‐derived neurotrophic factor (BDNF) gene to abnormal regional brain volumes in several psychiatric and neurodegenerative diseases. However, no neuroimaging studies assessed the effects of this allele on brain morphology in alcohol use disorders and its demonstrated change during abstinence from alcohol. Here we assessed the effects of the BDNF Val66Met (rs6265) polymorphism on regional brain tissue volumes and their recovery during short‐term abstinence in treatment‐seeking alcohol‐dependent individuals. 3D T1 weighted magnetic resonance images from 62 individuals were acquired at 1.5 T at one week of abstinence from alcohol; 41 of the participants were rescanned at 5 weeks of abstinence. The images were segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid and parcellated into regional volumes. The BDNF genotype was determined from blood samples using the TaqMan technique. Alcohol‐dependent Val (Valine)/Met heterozygotes and Val homozygotes had similar regional brain volumes at either time point. However, Val homozygotes had significant GM volume increases, while Val/Met heterozygotes increased predominantly in WM volumes over the scan interval. Longitudinal increases in GM but not WM volumes were related to improvements in neurocognitive measures during abstinence. The findings suggest that functionally significant brain tissue volume recovery during abstinence from alcohol is influenced by BDNF genotype.  相似文献   

10.
The purpose of this study was to improve the accuracy of tissue segmentation on brain magnetic resonance (MR) images preprocessed by multiscale retinex (MSR), segmented with a combined boosted decision tree (BDT) and MSR algorithm (hereinafter referred to as the MSRBDT algorithm). Simulated brain MR (SBMR) T1-weighted images of different noise levels and RF inhomogeneities were adopted to evaluate the outcome of the proposed method; the MSRBDT algorithm was used to identify the gray matter (GM), white matter (WM), and cerebral-spinal fluid (CSF) in the brain tissues. The accuracy rates of GM, WM, and CSF segmentation, with spatial features (G, x, y, r, θ), were respectively greater than 0.9805, 0.9817, and 0.9871. In addition, images segmented with the MSRBDT algorithm were better than those obtained with the expectation maximization (EM) algorithm; brain tissue segmentation in MR images was significantly more precise. The proposed MSRBDT algorithm could be beneficial in clinical image segmentation.  相似文献   

11.
Sporadic Alzheimer's disease (SAD) is the most common form of dementia, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent hereditary ischemic small vessel disease of the brain. Relevant biomarkers or specific metabolic signatures could provide powerful tools to manage these diseases. Therefore, the main goal of this study was to compare the postmortem frontal cortex gray matter, white matter and cerebrospinal fluid (CSF) between a cognitively healthy group and CADASIL and SAD groups. We evaluated 352 individual lipids, belonging to 13 lipid classes/subclasses, using mass spectrometry, and the lipid profiles were subjected to multivariate analysis to discriminate between the dementia groups (CADASIL and SAD) and healthy controls. The main lipid molecular species showing greater discrimination by partial least squares-discriminant analysis (PLS-DA) and a higher significance multivariate correlation (sMC) index were as follows: phosphatidylserine (PS) PS(44:7) and lysophosphatidylethanolamine (LPE) LPE(18:2) in gray matter (GM); phosphatidylethanolamine (PE) PE(32:2) and phosphatidylcholine PC PC(44:6) in white matter (WM), and ether PE (ePE) ePE(38:2) and ether PC (ePC) ePC(34:3) in CSF. Common phospholipid molecular species were obtained in both dementias, such as PS(44:7) and lyso PC (LPC) LPC(22:5) in GM, PE(32:2) in WM and phosphatidic acid (PA) PA(38:5) and PC(42:7) in CFS. Our exploratory study suggests that phospholipids (PLs) involved in neurotransmission alteration, connectivity impairment and inflammation response in GM, WM and CSF are a transversal phenomenon affecting dementias such as CADASIL and SAD independent of the etiopathogenesis, thus providing a possible common prodromal phospholipidic biomarker of dementia.  相似文献   

12.
Haploinsufficiency of 22q11 genes including catechol- O -methyltransferase (COMT) and proline dehydrogenase (PRODH) may result in structural and functional brain abnormalities and increased vulnerability to schizophrenia as observed in patients with microdeletions of 22q11. Thus, COMT and PRODH could be modifier genes for schizophrenia. We examined association of polymorphisms in COMT and PRODH with brain anatomy in young patients with schizophrenia and schizoaffective disorder. We acquired structural magnetic resonance imaging data from 51 male patients and genotyped two single nucleotide polymorphisms (SNPs) in the COMT gene and three in the PRODH gene. Statistical Parametric Mapping software and optimized voxel-based morphometry were used to determine regional gray matter (GM) and white matter (WM) density differences, and total GM and WM volume differences between genotype groups. Two nonsynonymous SNPs in the PRODH gene were associated with bilateral frontal WM density reductions and an SNP in the P2 promoter region of COMT (rs2097603) was associated with GM increase in the right superior temporal gyrus. Furthermore, we found evidence for COMT and PRODH epistasis: in patients with a COMT Val allele (rs4680) and with one or two mutated PRODH alleles, we observed increased WM density in the left inferior frontal lobe. Our results suggest that genetic variation in COMT and PRODH has significant effects on brain regions known to be affected in schizophrenia. Further research is needed to investigate the role of 22q11 genes on brain structure and function and their role in vulnerability for schizophrenia.  相似文献   

13.
The present study aimed to investigate structural modulation of brain by high level of oxygen during its peak period of development. Voxel-based morphometry analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics analysis of WM fractional anisotropy (FA) and mean diffusion (MD) based on MRI images were carried out on 21 Tibetan adolencents (15–18 years), who were born and raised in Qinghai-Tibetan Plateau (2900–4700 m) and have lived at sea level (SL) in the last 4 years. The control group consisted of matched Tibetan adolescents born and raised at high altitude all the time. SL immigrants had increased GM volume in the left insula, left inferior parietal gyrus, and right superior parietal gyrus and decreased GM in the left precentral cortex and multiple sites in cerebellar cortex (left lobule 8, bilateral lobule 6 and crus 1/2). Decreased WM volume was found in the right superior frontal gyrus in SL immigrants. SL immigrants had higher FA and lower MD at multiple sites of WM tracts. Moreover, we detected changes in ventilation and circulation. GM volume in cerebellum lobule 8 positively correlated with diastolic pressure, while GM volume in insula positively correlated vital capacity and hypoxic ventilatory response. Our finding indicate that the structural modulations of GM by high level of oxygen during its peak period of development are related to respiratory and circulatory regulations, while the modulation in WM mainly exhibits an enhancement in myelin maturation.  相似文献   

14.
Large cerebral ventricles are a frequent finding in brains of dogs with brachycephalic skull conformation, in comparison with mesaticephalic dogs. It remains unclear whether oversized ventricles represent a normal variant or a pathological condition in brachycephalic dogs. There is a distinct relationship between white matter and grey matter in the cerebrum of all eutherian mammals. The aim of this study was to determine if this physiological proportion between white matter and grey matter of the forebrain still exists in brachycephalic dogs with oversized ventricles. The relative cerebral grey matter, white matter and cerebrospinal fluid volume in dogs were determined based on magnetic-resonance-imaging datasets using graphical software. In an analysis of covariance (ANCOVA) using body mass as the covariate, the adjusted means of the brain tissue volumes of two groups of dogs were compared. Group 1 included 37 mesaticephalic dogs of different sizes with no apparent changes in brain morphology, and subjectively normal ventricle size. Group 2 included 35 brachycephalic dogs in which subjectively enlarged cerebral ventricles were noted as an incidental finding in their magnetic-resonance-imaging examination. Whereas no significant different adjusted means of the grey matter could be determined, the group of brachycephalic dogs had significantly larger adjusted means of lateral cerebral ventricles and significantly less adjusted means of relative white matter volume. This indicates that brachycephalic dogs with subjective ventriculomegaly have less white matter, as expected based on their body weight and cerebral volume. Our study suggests that ventriculomegaly in brachycephalic dogs is not a normal variant of ventricular volume. Based on the changes in the relative proportion of WM and CSF volume, and the unchanged GM proportions in dogs with ventriculomegaly, we rather suggest that distension of the lateral ventricles might be the underlying cause of pressure related periventricular loss of white matter tissue, as occurs in internal hydrocephalus.  相似文献   

15.
Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients, particularly in the WM.  相似文献   

16.

Background

The rs12807809 single-nucleotide polymorphism in NRGN is a genetic risk variant with genome-wide significance for schizophrenia. The frequency of the T allele of rs12807809 is higher in individuals with schizophrenia than in those without the disorder. Reduced immunoreactivity of NRGN, which is expressed exclusively in the brain, has been observed in Brodmann areas (BA) 9 and 32 of the prefrontal cortex in postmortem brains from patients with schizophrenia compared with those in controls.

Methods

Genotype effects of rs12807809 were investigated on gray matter (GM) and white matter (WM) volumes using magnetic resonance imaging (MRI) with a voxel-based morphometry (VBM) technique in a sample of 99 Japanese patients with schizophrenia and 263 healthy controls.

Results

Although significant genotype-diagnosis interaction either on GM or WM volume was not observed, there was a trend of genotype-diagnosis interaction on GM volume in the left anterior cingulate cortex (ACC). Thus, the effects of NRGN genotype on GM volume of patients with schizophrenia and healthy controls were separately investigated. In patients with schizophrenia, carriers of the risk T allele had a smaller GM volume in the left ACC (BA32) than did carriers of the non-risk C allele. Significant genotype effect on other regions of the GM or WM was not observed for either the patients or controls.

Conclusions

Our findings suggest that the genome-wide associated genetic risk variant in the NRGN gene may be related to a small GM volume in the ACC in the left hemisphere in patients with schizophrenia.  相似文献   

17.
Typically twin studies are used to investigate the aggregate effects of genetic and environmental influences on brain phenotypic measures. Although some phenotypic measures are highly heritable in twin studies, SNPs (single nucleotide polymorphisms) identified by genome-wide association studies (GWAS) account for only a small fraction of the heritability of these measures. We mapped the genetic variation (the proportion of phenotypic variance explained by variation among SNPs) of volumes of pre-defined regions across the whole brain, as explained by 512,905 SNPs genotyped on 747 adult participants from the Alzheimer''s Disease Neuroimaging Initiative (ADNI). We found that 85% of the variance of intracranial volume (ICV) (p = 0.04) was explained by considering all SNPs simultaneously, and after adjusting for ICV, total grey matter (GM) and white matter (WM) volumes had genetic variation estimates near zero (p = 0.5). We found varying estimates of genetic variation across 93 non-overlapping regions, with asymmetry in estimates between the left and right cerebral hemispheres. Several regions reported in previous studies to be related to Alzheimer''s disease progression were estimated to have a large proportion of volumetric variance explained by the SNPs.  相似文献   

18.
19.
Image segmentation of medical images is a challenging problem with several still not totally solved issues, such as noise interference and image artifacts. Region-based and histogram-based segmentation methods have been widely used in image segmentation. Problems arise when we use these methods, such as the selection of a suitable threshold value for the histogram-based method and the over-segmentation followed by the time-consuming merge processing in the region-based algorithm. To provide an efficient approach that not only produce better results, but also maintain low computational complexity, a new region dividing based technique is developed for image segmentation, which combines the advantages of both regions-based and histogram-based methods. The proposed method is applied to the challenging applications: Gray matter (GM), White matter (WM) and cerebro-spinal fluid (CSF) segmentation in brain MR Images. The method is evaluated on both simulated and real data, and compared with other segmentation techniques. The obtained results have demonstrated its improved performance and robustness.  相似文献   

20.

Background

Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM) and white matter (WM) disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.

Methods

We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.

Results

We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.

Conclusions

Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号