首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As CO2 concentrations continue to rise and drive global climate change, much effort has been put into estimating soil carbon (C) stocks and dynamics over time. However, the inconsistent methods employed by researchers hamper the comparability of such works, creating a pressing need to standardize the methods for soil organic C (SOC) quantification by the various methods. Here, we collected 712 soil samples from 36 sites of alpine grasslands on the Tibetan Plateau covering different soil depths and vegetation and soil types. We used an elemental analyzer for soil total C (STC) and an inorganic carbon analyzer for soil inorganic C (SIC), and then defined the difference between STC and SIC as SOCCNS. In addition, we employed the modified Walkley-Black (MWB) method, hereafter SOCMWB. Our results showed that there was a strong correlation between SOCCNS and SOCMWB across the data set, given the application of a correction factor of 1.103. Soil depth and soil type significantly influenced on the recovery, defined as the ratio of SOCMWB to SOCCNS, and the recovery was closely associated with soil carbonate content and pH value as well. The differences of recovery between alpine meadow and steppe were largely driven by soil pH. In addition, statistically, a relatively strong correlation between SOCCNS and STC was also found, suggesting that it is feasible to estimate SOCCNS stocks through the STC data across the Tibetan grasslands. Therefore, our results suggest that in order to accurately estimate the absolute SOC stocks and its change in the Tibetan alpine grasslands, adequate correction of the modified WB measurements is essential with correct consideration of the effects of soil types, vegetation, soil pH and soil depth.  相似文献   

2.
农业活动是温室气体重要的排放源,土壤碳库[土壤有机碳(SOC)和无机碳(SIC)]稍微变化会对大气CO_2产生很大影响。汉中盆地是南水北调的重要水源涵养地,在该区域秸秆还田、农田撂荒和林地是目前常见土地利用方式,但缺乏不同利用方式对SIC和SOC影响的研究。该研究采集该区域典型样地土壤,用滴定法和有机碳分析仪分别测定其SIC和SOC含量,研究3种土地利用方式对土壤碳库的影响。结果表明:SOC随土层深度最为敏感的是农田,其次是撂荒地,林地最不敏感。0~140 cm土层SOC碳密度,林地最大,是撂荒田的2.26倍,农田是撂荒田的1.37倍。深土层SOC碳密度,林地是撂荒田的2.44倍,农田是撂荒田的1.07倍。撂荒田的SIC密度最大,其次是农田,林地的SIC碳密度最低。在0~140 cm土层中,SIC密度依次为12.37、11.68和9.77 kg·m~2,撂荒田的SIC碳密度是林地的1.27倍。随着我国农村发展,土地利用管理出现新的方式,今后在估算土地利用管理方式对土壤碳影响时还需要综合考虑SOC和SIC。  相似文献   

3.
Paddy soils are classified as wetlands which play a vital role in climatic change and food production. Soil carbon (C), especially soil organic C (SOC), in paddy soils has been received considerable attention as of recent. However, considerably less attention has been given to soil inorganic carbon (SIC) in paddy soils and the relationship between SOC and SIC at interface between soil and the atmosphere. The objective of this research was to investigate the utility of applying Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) to explore SOC and SIC present near the surface (0-10 μm) of paddy soils. The FTIR-PAS spectra revealed an unique absorption region in the wavenumber range of 1,350-1,500 cm(-1) that was dominated by C-O (carbonate) and C-H bending vibrations (organic materials), and these vibrations were used to represented SIC and SOC, respectively. A circular distribution between SIC and SOC on the surface of paddy soils was determined using principal component analysis (PCA), and the distribution showed no significant relationship with the age of paddy soil. However, SIC and SOC were negatively correlated, and higher SIC content was observed near the soil surface. This relationship suggests that SIC in soil surface plays important roles in the soil C dynamics.  相似文献   

4.
准噶尔盆地南缘荒漠区土壤碳分布及其稳定同位素变化   总被引:3,自引:0,他引:3  
以亚洲中部干旱区准噶尔盆地南缘荒漠区为研究区,根据荒漠距离绿洲的距离,分别在荒漠边缘、中部和腹地设置3条样带,并采集2 m深的土壤剖面样品,研究土壤有机碳(SOC)、无机碳(SIC)含量及其稳定碳同位素的分布,探讨土壤碳变化与距绿洲距离的关系.结果表明: SOC含量随剖面土层深度增加而减少.受距绿洲距离的影响,SOC含量表现为荒漠边缘>荒漠中部>荒漠腹地.荒漠边缘SOC的δ13C值范围为-21.92‰~-17.41‰,且随深度增加而递减;荒漠中部和荒漠腹地的δ13C值范围为-25.20‰~-19.30‰,且随深度增加先增后减,由此推断准噶尔盆地南缘荒漠中部和腹地地表植被以C3植物为主,而绿洲边缘经历了从C3植物为主到C4植物为主的演替过程.荒漠边缘SIC平均含量为38.98 g·kg-1,是荒漠腹地的6.01倍,表明0~2 m深度内大量SIC在荒漠边缘呈聚集趋势.SIC的δ13C值随深度增加先减后增,底层富集,主要受原生碳酸盐含量和剖面土壤CO2的影响.  相似文献   

5.
我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性   总被引:18,自引:0,他引:18  
祖元刚  李冉  王文杰  苏冬雪  王莹  邱岭 《生态学报》2011,31(18):5207-5216
根据黑龙江、吉林、辽宁省和内蒙古地区相关历史资料数据,分析了我国东北表层土壤(0-50 cm)土壤相关理化性质与有机碳、无机碳的相关性,得到如下结论:土壤全氮、碱解氮、全磷、速效磷、速效钾、K+离子交换量、Fe2O3、P2O5、总孔隙度均与土壤有机碳含量呈显著正相关(R2=0.10-0.94, n=38-345, P<0.0001),但与土壤无机碳含量则大多呈显著负相关(R2=0.11-0.30, n=37-122, P<0.01);与此相反,土壤pH值、容重与土壤有机碳呈负相关(R2=0.36-0.42,n=41-304, P<0.0001),而与无机碳呈显著正相关(R2=0.29-0.31,n=39-125, P <0.01)。表层土壤有机碳、无机碳与土壤理化性质呈相反变化趋势的结果说明,由于土壤利用方式变化所导致的土壤理化性质改变对土壤无机碳和有机碳可能具有相反影响。在研究土壤碳平衡过程中,应该充分考虑这种关系所导致的相互补偿作用,即有机碳的增加,可能意味着无机碳的减少,或者反之。目前研究中普遍忽略无机碳的变化,可能导致生态系统碳收支计算显著偏差,所获得的经验拟合方程有利于对我国东北地区土壤碳平衡研究产生的这种偏差进行粗略估计。  相似文献   

6.

Aims

Soil inorganic carbon (SIC), primarily calcium carbonate, is a major reservoir of carbon in arid lands. This study was designed to test the hypothesis that carbonate might be enhanced in arid cropland, in association with soil fertility improvement via organic amendments.

Methods

We obtained two sets (65 each) of archived soil samples collected in the early and late 2000’s from three long-term experiment sites under wheat-corn cropping with various fertilization treatments in northern China. Soil organic (SOC), SIC and their Stable 13C compositions were determined over the range 0–100 cm.

Results

All sites showed an overall increase of SIC content in soil profiles over time. Particularly, fertilizations led to large SIC accumulation with a range of 101–202 g C m?2 y?1 in the 0–100 cm. Accumulation of pedogenic carbonate under fertilization varied from 60 to 179 g C m?2 y?1 in the 0–100 cm. Organic amendments significantly enhanced carbonate accumulation, in particular in the subsoil.

Conclusions

More carbon was sequestrated in the form of carbonate than as SOC in the arid cropland in northern China. Increasing SOC stock through long-term straw incorporation and manure application in the arid and semi-arid regions also enhanced carbonate accumulation in soil profiles.  相似文献   

7.
Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m-2 yr-1 and 1.34 to 5.33 g C m-2 yr-1 respectively for saline soil, and from 1.43 to 4.9 g C m-2 yr-1 and 0.79 to 1.27 g C m-2 yr-1respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile.  相似文献   

8.
The effect of livestock grazing on grassland degradation and the resulting impact on soil carbon concentration is an important factor in carbon estimation. We addressed this issue using field observations and laboratory analysis of samples from Tibetan grassland. Based on the field measurements, we investigated the soil organic carbon (SOC) and soil inorganic carbon (SIC) under two contrasting degradation states: lightly or non-degraded grasslands (LDG) and heavily degraded grasslands (HDG). We assessed their relationships with environmental factors using data collected from 99 sites across Northern Tibet during 2011–2012. Data were analyzed using a linear mixed-effects model and one-way ANOVA. The results showed that: (1) SOC concentration decreased and SIC concentration increased following grassland degradation, especially at soil depths in the range of 0–10 cm (P < 0.05); (2) the major environmental factors affecting SOC and SIC were soil pH and plant biomass; (3) spatially, the SOC density increased with the mean annual temperature and mean annual precipitation, whereas SIC exhibited the opposite trend; (4) the SOC density increased at first and then decreased with increasing grazing intensity, with an opposite trend in SIC; and (5) soil carbon storage in this region was 0.14 Pg smaller in the HDG than in the LDG. This study suggests that grassland degradation can significantly affect the vertical distribution and storage of SOC and SIC. The carbon sequestration capacity of the top 100 cm of soil in Northern Tibet was estimated as 0.14 Pg.  相似文献   

9.
北京城市绿地表层土壤碳氮分布特征   总被引:12,自引:4,他引:8  
罗上华  毛齐正  马克明  邬建国 《生态学报》2014,34(20):6011-6019
在北京中心城区及周边郊区(覆盖六环路范围),采集不同类型绿地表层(0—20cm)土壤样品490份,测定了土壤有机碳、无机碳、全碳和全氮含量,探讨了城市土壤碳氮分布特征。结果表明:城市不同类型绿地土壤中碳含量差异明显,行道树土壤的有机碳、无机碳和全碳含量均显著高于其他类型绿地,而其它类型土壤有机碳含量差异不显著;居住绿地、道路绿地、单位绿地和公园绿地土壤无机碳含量显著高于生产绿地、防护绿地;城市土壤有机碳、无机碳和全碳含量与距离城市中心距离呈显著的负相关关系;与郊区土壤相比,城区绿地土壤有机碳、无机碳含量有富集的趋势,且无机碳增加更加明显;与郊区农业土壤相比,城市绿地土壤中有机碳有明显地增加趋势,说明北京的城市化在一定程度上有利于土壤碳库的累积。不同类型绿地土壤全氮含量差异不显著,城郊之间全氮含量也无显著差异,土壤全氮质量分数和碳氮比有逐渐减小的趋势,城市化对土壤氮的影响需要进一步研究。  相似文献   

10.
Plantations play an important role in absorbing atmospheric CO2 and plantation soil can serve as an important carbon (C) sink. However, the stocks and dynamics of soil C in differently aged plantation forests in north China remain uncertain. In this study, we measured soil inorganic carbon (SIC), soil organic carbon (SOC) and total nitrogen content (STN), the light (LF) and heavy fractions (HF) of soil organic matter (SOM) to a depth of 1 m in 3 different ages (10-, 30-, 40-year-old) of Pinus sylvestris var. mongolica (Mongolia pine) plantations in 2011 and 2012. Soil pH, texture and moisture were also measured to explore the causes of SOC dynamics for different stand ages. Our results showed that no significant difference in SIC content was observed at different soil depths. As forest age increases, SIC content as well as the C and N content in SOM, LF and HF initially rose and then decreased, while the LF in SOC initially decreased and then increased. Although the C:N ratio of SOC and HF did not significantly change, the C:N ratio of LF increased with depth. SOC dynamics at different stand ages were significantly correlated with soil moisture and clay content. Soil pH and moisture explained 58.63% of the overall variation of SOC at different depths. Moreover, the SOC increased during the early stage of afforestation, mostly because of the increase in recalcitrant C; however, the decrease of SOC with increasing stand age was also mainly affected by C loss in the recalcitrant C pool.  相似文献   

11.
目前,开垦对沼泽湿地土壤有机碳的影响已有较多研究,但针对滨海盐碱化沼泽的研究较为薄弱,特别是对无机碳的影响尚不清晰,从而导致无法全面评估开垦对总碳的影响。本研究选取天津七里海盐碱化沼泽湿地和对应长期开垦(约60年)后的农田作为研究对象,采集0~15和15~30 cm两层土样,采用湿筛法得到>2、0.25~2、0.053~0.25和<0.053 mm 4个粒级水稳性团聚体。结果表明:湿地长期开垦后,表层(0~15 cm)和下层(15~30 cm)土壤大团聚体(>2 mm)比例均显著降低(-48.1%、-58.1%),微团聚体(0.053~0.25 mm)比例均显著增加(+166.1%、+70.0%);各粒级团聚体有机碳含量均显著降低(31.2%~56.8%);表层土壤(0~15 cm)中等团聚体(0.25~2 mm)和矿质颗粒组分(<0.053 mm)无机碳含量显著增加(+85.4%、+75.4%);而下层土壤(15~30 cm)各级团聚体无机碳含量均显著增加(182.3%~448.2%);表层土壤大团聚体(>2 mm)、中等团聚体(0.25~2 mm)总碳含量显著降低(-12.9%、-21.9%),而总碳含量在表层土壤微团聚体(0.053~0.25 mm)、矿质颗粒组分、下层土壤各级团聚体均无显著变化。可见,滨海盐碱化沼泽湿地开垦虽导致有机碳含量降低,但无机碳含量却具有显著反补作用,从而减缓或抑制了碳库流失。因此,在滨海盐碱化地区,今后应更加重视开垦过程中土壤无机碳动态变化及其对总碳的影响。  相似文献   

12.
黄土高原中部的丘陵沟壑区位于半湿润、半干旱气候带,生态环境脆弱,水土流失严重,植被恢复是该地区水土保持与生态重建的重要措施。辽东栎天然次生林和刺槐人工林是该地区典型的森林植被类型。以黄土丘陵森林分布区边缘的两种主要森林类型为对象,通过采集林地不同深度土壤样品,对比分析两种林地土壤中碳、氮、磷含量的计量关系及垂直分布特征,旨在探明该区域土壤化学计量特征及主要影响因素。结果表明:(1)在两种林地类型中,土壤有机碳与全碳含量呈正相关关系,两种林地可用同一曲线进行拟合,说明特定土壤类型在同一区域其有机碳和无机碳相对含量基本稳定。(2)土壤有机碳与全氮比值在10左右,在不同土层深度无明显变化;而土壤全碳与全氮比值则随土壤深度的增加而增加,超过1 m以后呈现饱和曲线的变化趋势。(3)土壤氮磷比随土壤深度的增加呈幂次型降低。  相似文献   

13.
Soil inorganic carbon storage pattern in China   总被引:1,自引:0,他引:1  
Soils with pedogenic carbonate cover about 30% (3.44 × 106 km2) of China, mainly across its arid and semiarid regions in the Northwest. Based on the second national soil survey (1979–1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3±6.3 PgC (1 Pg=1015 g) to the depth investigated to 2 m. Soil inorganic carbon storages were 4.6, 10.6, 11.1, and 20.8 Pg for the depth ranges of 0–0.1, 0.1–0.3, 0.3–0.5, and 0.5–1 m, respectively. Stocks for 0.1, 0.3, 0.5, and 1 m of depth accounted for 8.7%, 28.7%, 49.6%, and 88.9% of total SIC, respectively. In contrast with soil organic carbon (SOC) storage, which is highest under 500–800 mm yr−1 of mean precipitation, SIC storage peaks where mean precipitation is <400 mm yr−1. The amount and vertical distribution of SIC was related to climate and land cover type. Content of SIC in each incremental horizon was positively related with mean annual temperature and negatively related with mean annual precipitation, with the magnitude of SIC content across land cover types showing the following order: desert, grassland >shrubland, cropland >marsh, forest, meadow. Densities of SIC increased generally with depth in all ecosystem types with the exception of deserts and marshes where it peaked in intermediate layers (0.1–0.3 m for first and 0.3–0.5 m for latter). Being an abundant component of soil carbon stocks in China, SIC dynamics and the process involved in its accumulation or loss from soils require a better understanding.  相似文献   

14.
Summary Determinations of organic carbon on 12 carbonate-free terra rossa soil samples from Cyprus with the Walkley-Black method and the Allison reference method showed degree of carbon recovery with the Walkley-Black method ranging between 69.5 and 79.0 per cent. Determinations of organic carbon on 15 carbonaceous (21–28 per cent CaCO3) alluvial soil samples with the method of Allison gave erratic results apparently because the carbonate could not be quantitatively removed prior to organic-C determination.Finally a rapid gravimetric method for estimating calcium carbonate in soils as refined by Bauer et al. 3 was tested on the 15 alluvial soil samples mentioned above and found as precise and as accurate as the Allison reference method.  相似文献   

15.
为探究不同秸秆还田模式对土壤碳库的影响,以陕西关中平原连续11年麦玉秸秆还田定位试验为基础,选择5种还田模式,即秸秆均不还田(CK)、小麦高留茬-玉米秸秆粉碎还田(WH-MC)、小麦玉米秸秆均粉碎还田(WC-MC)、小麦高留茬-玉米秸秆不还田(WH-MN)和小麦秸秆粉碎还田-玉米秸秆不还田(WC-MN),测定不同模式土壤有机碳(SOC)、活性碳组分和无机碳(SIC)在0~40 cm土层的分布。结果表明: 与CK相比,WH-MC和WC-MC的SOC储量分别增加28.1%和22.2%,SIC储量分别增加20.4%和17.3%;与试验初始土壤碳储量相比,各还田模式SOC固持量变化为-0.84~6.55 t·hm-2,SIC固持量为-0.26~8.61 t·hm-2;土壤总固碳效率为7.5%,维持土壤初始碳储量水平的最小碳投入量为4.65 t·hm-2·a-1;与CK相比,WH-MC和WC-MC显著提升0~20 cm土层活性碳组分含量。主成分分析表明,不同还田模式下土壤碳库变化主要受秸秆投入量的影响。来源于灌溉水和植物残体的Ca2+、Mg2+与SOC矿化产生的CO2可共沉淀形成CaCO3,可能是本研究SIC增加的主要机制。从提高土壤碳固持角度来看,小麦高留茬-玉米秸秆粉碎还田模式为最佳还田模式。  相似文献   

16.
新银合欢篱对紫色土坡地土壤有机碳固持的作用   总被引:2,自引:0,他引:2  
土壤有机碳的固持对保持土壤肥力以及缓解全球温室效应具有重要意义。本研究通过田间定位试验,探讨了新银合欢(Leucaena Leucocephala)篱对10和15的紫色土农耕地(玉米地)和经济林地(油桃地)表层(0-20cm)土壤有机碳积累的影响。结果表明:种植3年的新银合欢篱的10和15农耕地、10经济林地土壤有机碳密度分别比相应的无植物篱的对照地提高41.53%、43.29%、32.15%。经济林处理土壤有机碳含量、有机碳密度、呼吸强度显著大于农耕地处理;10比15农耕地更有利于土壤有机碳、呼吸速率及微生物量碳提高;农耕地比经济林地更利于微生物生物量维持。各处理下坡比上坡更利于土壤有机碳蓄积,且土壤呼吸强度提高,但土壤微生物商基本相同。不同处理下,土壤有机碳与土壤理化性质相关性各不相同:定植新银合欢篱的10和15农耕地、10经济林地土壤有机碳与有机质含量、土壤微生物碳有极显著的相关性,与全钾呈正相关,与pH负相关;定植新银合欢篱的10和15农耕地呼吸强度与有机碳相关关系均达到了极显著性,10经济林地呼吸强度与有机碳显著相关;土壤微生物指标变化与有机碳的变化趋势一致,能反映土壤质量变化。阐明定植新银合欢篱利于土壤有机碳固持,且能增强土壤微生物活性,提高土壤质量。  相似文献   

17.
Although vegetation rehabilitation on semi-arid and arid regions may enhance soil carbon sequestration, its effects on soil carbon fractions remain uncertain. We carried out a study after planting Artemisia ordosica (AO, 17 years), Astragalus mongolicum (AM, 5 years), and Salix psammophila (SP, 16 years) on shifting sand land (SL) in the Mu Us Desert, northwest China. We measured total soil carbon (TSC) and its components, soil inorganic carbon (SIC) and soil organic carbon (SOC), as well as the light and heavy fractions within soil organic carbon (LF-SOC and HF-SOC), under the SL and shrublands at depths of 100 cm. TSC stock under SL was 27.6 Mg ha?1, and vegetation rehabilitation remarkably elevated it by 40.6 Mgha?1, 4.5 Mgha?1, and 14.1 Mgha?1 under AO, AM and SP land, respectively. Among the newly formed TSC under the three shrublands, SIC, LF-SOC and HF-SOC accounted for 75.0%, 10.7% and 13.1% for AO, respectively; they made up 37.0%, 50.7% and 10.6% for AM, respectively; they occupied 68.6%, 18.8% and 10.0% for SP, respectively. The accumulation rates of TSC within 0–100 cm reached 238.6 g m?2y?1, 89.9 g m?2y?1 and 87.9 g m?2y?1 under AO, AM and SP land, respectively. The present study proved that the accumulation of SIC considerably contributed to soil carbon sequestration, and vegetation rehabilitation on shifting sand land has a great potential for soil carbon sequestration.  相似文献   

18.
Increased nitrogen (N) deposition is common worldwide. Questions of where, how, and if reactive N-input influences soil carbon (C) sequestration in terrestrial ecosystems are of great concern. To explore the potential for soil C sequestration in steppe region under N and phosphorus (P) addition, we conducted a field experiment between 2006 and 2012 in the temperate grasslands of northern China. The experiment examined 6 levels of N (0–56 g N m-2 yr-1), 6 levels of P (0–12.4 g P m-2 yr-1), and a control scenario. Our results showed that addition of both N and P enhanced soil total C storage in grasslands due to significant increases of C input from litter and roots. Compared with control plots, soil organic carbon (SOC) in the 0–100 cm soil layer varied quadratically, from 156.8 to 1352.9 g C m-2 with N addition gradient (R2 = 0.99, P < 0.001); and logarithmically, from 293.6 to 788.6 g C m-2 with P addition gradient (R2 = 0.56, P = 0.087). Soil inorganic carbon (SIC) decreased quadratically with N addition. The net C sequestration on grassland (including plant, roots, SIC, and SOC) increased linearly from -128.6 to 729.0 g C m-2 under N addition (R2 = 0.72, P = 0.023); and increased logarithmically, from 248.5 to 698 g C m-2under P addition (R2 = 0.82, P = 0.014). Our study implies that N addition has complex effects on soil carbon dynamics, and future studies of soil C sequestration on grasslands should include evaluations of both SOC and SIC under various scenarios.  相似文献   

19.
土壤有机碳动态:风蚀效应   总被引:10,自引:0,他引:10  
苏永中  赵文智 《生态学报》2005,25(8):2049-2054
土壤风蚀是引起土壤退化最广泛的形式和原因之一。土壤风蚀对土壤碳动态的影响机制一方面是土壤风蚀引起土壤退化使土壤生产力下降,输入土壤的碳数量减少;另一方面是富含有机碳的细粒物质直接移出系统。风蚀土壤碳的去向包括:(1)就近沉积,(2)沉积于水渠和河流,输入水体;(3)以粉尘形式运移,在远离风蚀区的地域沉积;(4)氧化释放至大气。风蚀引起土壤碳的迁移和沉积不仅导致土壤有机碳在地域间的再分布,使土壤性状的空间异质性增加,也显著改变了土壤系统中碳矿化的生物学过程。土壤有机碳的保持可以促进团聚体的形成,使土壤物理稳定性增加,减缓风蚀。对易风蚀土地进行退耕还林还草、实行保护性耕作等措施可以有效增加土壤碳的固存。  相似文献   

20.
Losses of soil organic carbon under wind erosion in China   总被引:7,自引:0,他引:7  
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号