首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Antisense oligonucleotides have been widely used to achieve specific inhibition of targeted gene expression. However, the mechanism of action is not well understood and in many systems sequence-independent effects occur. We have recently shown that chronic administration of an antisense c-myc phosphorothioate oligonucleotide can specifically inhibit expression of the c-myc protein and growth in human breast cancer cells. We now identify an additional effect of the same oligonucleotide on cell adhesion. Transient delivery through electroporation of 2.5 microM antisense-myc oligonucleotide to MCF-7 cells results in 85% inhibition of adhesion to plastic substratum within 24 h. Both the onset of this effect and the subsequent recovery occur without a change in cell viability, growth, or alteration of adhesion to Matrigel, collagen IV, laminin, or fibronectin. However, no parallel changes in c-myc mRNA or protein expression are detectable, suggesting that in this instance inhibition of adhesion caused by antisense-myc oligonucleotide may involve a mechanism independent of the target sequence.  相似文献   

2.
We have prepared protein-peptide conjugates composed of bovine serum albumin (BSA) derivatized with short peptides containing the Arg-Gly-Asp (RGD) sequence derived from the adhesion site of fibronectin. The RGD-BSA conjugates were used to coat tissue culture plastic surfaces which then served as substrata in cell adhesion experiments. Our results indicate that the efficiency of adhesion to RGD-BSA-coated surfaces is highly dependent on the valency of the (RGD)n-BSA conjugates. For example, on surfaces with approximately equal amounts of RGD ligand, CHO cells adhered virtually 100% to the (RGD)n-BSA (n = 20.8) conjugate and not at all to the (RGD)n-BSA (n = 3.5) conjugate. Adhesion on (RGD)n-BSA-coated substrata and on fibronectin- or vitronectin-coated substrata was also examined in terms of the relationship between cell adhesion and the intermolecular distances of adsorbed proteins. It was observed that for substrata coated with relatively compact, symmetric molecules, such as RGD-BSA or vitronectin, adhesion dropped off sharply as intermolecular distances increased; by contrast, for fibronectin, a large asymmetric molecule, adhesion declined more gradually as intermolecular distances increased. Finally, we have examined the role of different cell-surface receptors in the process of adhesion to RGD-BSA substrata. Interestingly, competition and blocking experiments with antibodies and with soluble competing proteins suggest that it is the vitronectin receptor rather than the fibronectin receptor which mediates adhesion to RGD-BSA.  相似文献   

3.
We have investigated the association of the recently described 140-kDa cell membrane receptor for fibronectin with the cytoskeleton or with substratum-bound fibronectin. Using a monospecific polyclonal antibody to the 140-kDa receptor, we have demonstrated that most of the receptor molecules are soluble in nonionic detergent either in suspension culture CHO cells or in CHO cells attached to and spread on a fibronectin-coated substratum. This may suggest that putative linkages of the receptor either to fibronectin or to detergent-insoluble cytoskeletal components are labile to nonionic detergent and thus are rather weak. Alternatively, it may mean that only a small fraction of the cell's receptors are needed to mediate adhesion. In order to explore this latter concept, we have coated substrata with various concentrations of PB1, a monoclonal antibody with a high affinity for fibronectin receptor. We demonstrate that coating the substratum with increasing concentrations of PB1 results in increasing amounts of 140-kDa receptor becoming bound to the substratum in detergent-insoluble form. However, the amount of receptor bound does not necessarily correlate with the degree of cell adhesion and spreading. Thus, coating the substratum with 5 μg/ml of PB1 results in essentially complete attachment and spreading of CHO cells, but only a small fraction of the 140-kDa receptor becomes substratum bound. Coating with 50 μg/ml of PB1 produces no further increase in cell adhesion and spreading, but results in the detergent-stable association of a large fraction of the total receptor pool with the substratum. These observations suggest the possibility of there being “spare” receptors for cell adhesion processes.  相似文献   

4.
5.
Chick embryo fibroblasts were plated on Petri dishes that had not been treated for use in tissue culture (bacteriological dishes). On these dishes the cells grow at the same exponential rate as cells plated on tissue culture dishes, but their growth becomes inhibited sooner after plating, and therefore at a lower cell number per dish. The inhibition of cell growth on bacteriological dishes is correlated with the formation of cell clumps. Clump formation is reversible by mechanical transfer of the clumps to a tissue culture dish: the cells migrate out of the clumps, form a monolayer, and cell growth resumes.Clump formation was studied by time-lapse cinematography, and was found to be due to reduced adhesion of the cells to the bacteriological dish surface. This reduced adhesiveness of the substratum is due to a lower number of negatively-charged residues on the bacteriological dish surface, which can be measured by the binding of crystal violet. The number of negatively-charged residues, and therefore the adhesiveness of the substratum can be altered by treatment of the dishes with sulfuric acid. Serum components of the medium were found to affect cell adhesion to the bacteriological dishes, consequently altering the efficiency of cell attachment, the extent of cell growth and the pattern of clump formation.The cells in clumps were compared with those in confluent monolayers on tissue culture dishes. Growth-inhibited cells on both types of dish were found to be equally viable. Cells in clumps on bacteriological dishes were found to be inhibited in the G1 phase of the cell cycle, as are cells in density-inhibited monolayers. Infection by the oncogenic virus, Rous sarcoma virus, can release the cells from growth-inhibition on both types of dish. Cell-induced alterations of the medium are not involved in the growth inhibition of cells on bacteriological dishes.  相似文献   

6.
M W Lark  L A Culp 《Biochemistry》1983,22(9):2289-2296
Newly formed adhesion sites, left bound to the tissue culture substratum after [ethylenebis(oxyethylenenitrilo)] tetraacetic acid mediated detachment of simian virus 40 transformed Balb/c 3T3 cells, have been extracted with 0.5 M guanidine hydrochloride or Zwittergent (3-12), extractions which identify different subfractions of proteoglycans in these sites. The compositions of these extracts were then compared to similar extracts of "maturing" adhesion sites in an effort to identify structural and metabolic changes which may occur with time and which may play a role in altering adhesion during cell movement. Guanidine hydrochloride (0.5 M) extracts both hyaluronate and chondroitin sulfate proteoglycan from newly formed sites (but which are not complexed in an aggregate similar to that found in cartilage) but only hyaluronate from fully matured sites, indicating that the chondroitin sulfate proteoglycans somehow become resistant to extraction with time. Both high and low molecular weight forms of hyaluronate also accumulate in sites with time. Zwittergent 3-12 solubilizes free chains of heparan sulfate but not heparan sulfate proteoglycan from either class of sites. Most of the heparan sulfate in newly formed sites occurs as a large proteoglycan excludable from Sepharose CL-6B columns under stringent dissociative conditions; however, as adhesion sites "mature", a portion of this proteoglycan appears to be converted by some unknown mechanism to free heparan sulfate chains. This process may very well weaken the close adhesive contacts between the cell and substratum mediated by fibronectin's binding to the highly multivalent heparan sulfate proteoglycans. These studies further indicate that there is considerable metabolism and changing intermolecular associations of proteoglycans within these sites during movement of fibroblasts over this model extracellular matrix.  相似文献   

7.
8.
The adhesion of BHK and PyBHK cells to the substratum   总被引:13,自引:0,他引:13  
R Shields  K Pollock 《Cell》1974,3(1):31-38
The adhesion of BHK 21/13 cells and their polyoma-transformed derivatives was studied by detaching them from plastic dishes with EGTA. The PyBHK cells were less adhesive, and the possibility that cyclic nucleotides might play a role in cell adhesion was examined. Both cAMP and cGMP increase cell adhesion through a mechanism involving microtubules, but glucocorticoids act to increase cell adhesion through an independent mechanism.We also examined the role of membrane fluidity in cell adhesion, and the results are discussed in terms of a general model for cell adhesion and locomotion.  相似文献   

9.
A SEM and TEM evaluation of adhesion of HeLa-S3 cells to suspensions of culture microcarriers coated with various substrata revealed two unique cell morphologies. One is similar to that for cells attaching to culture dishes and the other one only appeared with microcarriers stirred under high shear conditions. The usual appearance of a spreading cell is to change from a sphere to the shape of a 'fried egg'. This proceeded in HeLa cells by a radial extension of the filopodia in between which the cytoplasm subsequently filled. Fluorescent antibody staining of actin suggested that more actin was present at the periphery of the spreading edges of the cell than inwards. The above morphology was characteristic of HeLa cell attachment to gelatin-coated microcarriers. However, the morphology of the attachment to microcarriers coated with non-biological substances such as negatively charged sulfonate groups or positively charged polyethyleneimine or even with the attachment protein laminin was quite different. Here the cells attached and began to spread as with gelatin-microcarriers, however, the spreading was not radial but occurred from one or two major regions of the cell periphery. The cell then appeared to constrict with the formation of a substratum attached pedestal upon which the cell body was perched. With time the cell pinched-off from pedestal. Evidence indicated that the pedestal was quite fragile. Furthermore, fluorescent antiactin staining indicated that the initial spreading region contained abundant actin which was depleted upon pedestal formation and detachment. The above in addition to previous kinetic measurements provided the information to classify cell substrate attachment materials into two distinct types. One is specific substrata which promote normal attachment and spreading and appear to interact with specific cell surface proteins. The other is non-specific substrata which in high shear conditions induces pedestal formation followed by pinching-off of the cells. Had previous attachment assays been done under high shear as done with the microcarriers and HeLa cells it is likely that substrata classified as specific might be reclassified into non-specific.  相似文献   

10.
A novel class of surface-active copolymers is described, designed to protect surfaces from nonspecific protein adsorption while still inducing specific cell attachment and spreading. A graft copolymer was synthesized, containing poly-(L-lysine) (PLL) as the backbone and substrate binding and poly(ethylene glycol) (PEG) as protein adsorption-resistant pendant side chains. A fraction of the grafted PEG was pendantly functionalized by covalent conjugation to the peptide motif RGD to induce cell binding. The graft copolymer spontaneously adsorbs from dilute aqueous solution onto negatively charged surfaces. The performance of RGD-modified PLL-g-PEG copolymers was analyzed in protein adsorption and cell culture assays. These coatings efficiently blocked the adsorption of serum proteins to Nb(2)O(5) and tissue culture polystyrene while specifically supporting attachment and spreading of human dermal fibroblasts. This surface functionalization technology is expected to be valuable in both the biomaterial and biosensor fields, because different signals can easily be combined, and sterilization and application are straightforward and cost-effective.  相似文献   

11.
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conducive, to cell polarization thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cellsubstratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

12.
Malignant transformation of fibroblast and epithelial cells is accompanied by increased beta 1-6 N-acetylglucosaminyltransferase V (GlcNAc-TV) activity, a Golgi N-linked oligosaccharide processing enzyme. Herein, we report that expression of GlcNAc-TV in Mv1Lu cells, an immortalized lung epithelial cell line results in loss of contact- inhibition of cell growth, an effect that was blocked by swainsonine, an inhibitor of Golgi processing enzyme alpha-mannosidase II. In serum- deprived and high density monolayer cultures, the GlcNAc-TV transfectants formed foci, maintained microfilaments characteristic of proliferating cells, and also experienced accelerated cell death by apoptosis. Injection of the GlcNAc-TV transfectants into nude mice produced a 50% incidence of benign tumors, and progressively growing tumors in 2:12 mice with a latency of 6 mo, while no growth was observed in mice injected with control cells. In short term adhesion assays, the GlcNAc-TV expressing cells were less adhesive on surfaces coated with fibronectin and collagen type IV, but no changes were observed in levels of cell surface alpha 5 beta 1 or alpha v beta 3 integrins. The larger apparent molecular weights of the LAMP-2 glycoprotein and integrin glycoproteins alpha 5, alpha v and beta 1 in the transfected cells indicates that their oligosaccharide chains are substrates for GlcNAc-TV. The results suggest that beta 1-6GlcNAc branching of N-linked oligosaccharides contributes directly to relaxed growth controls and reduce substratum adhesion in premalignant epithelial cells.  相似文献   

13.
During chick embryogenesis, massive alterations occur in the migrating cell's substratum, or extracellular matrix. The possibility that some of the components of this milieu play a regulatory role in cell differentiation was explored in a cell-culture system derived from embryonic chick skeletal muscle tissue. In particular, the effects of collagen and the glycosaminoglycans were studied. Collagen is required for muscle cell attachment and spreading onto plastic and glass tissue-culture dishes. A major constituent of the early embryonic extracellular space, hyaluronate (HA), while having no significant effect on collagen-stimulated cell attachment and spreading, was found to inhibit myogenesis. The muscle-specific M subunit of creatine kinase was preferentially inhibited. Control experiments indicated that the inhibition was specifically caused by HA and not by other glycosaminoglycans. A general metabolic inhibition of the cultures was not observed. Muscle cells could bind to HA-coated beads at all stages of differentiation but were inhibited only when HA was added within the first 24 h of culture. Endogenous GAG in the culture is normally degraded during the first 24 h after plating as well; this may parallel the massive degradation of HA that occurs in the early embryo in vivo. These findings suggest a regulatory role for HA in modulating skeletal muscle differentiation, with degradation of an inhibitory component of the cell substratum a requirement for myogenesis.  相似文献   

14.
Effects of substratum morphology on cell physiology   总被引:3,自引:0,他引:3  
Among the host of substratum properties that affect animal cell behavior, surface morphology has received relatively little attention. The earliest effect of surface morphology on animal cells was discovered almost a century ago when it was found that cells became oriented in response to the underlying topography. This phenomenon is now commonly known as contact guidance. From then until very recentrly, little progress has been made in understanding the role of surface morphology on cell behavior, primarily due to a lack of defined surfaces with uniform morphologies. This problem has been solved recently with the development of photolithographic techniques to prepare substrata with well defined and uniform surface morphologies. Availability of such surfaces has facilitated systematic in vitro experiments to study influence of surface morphology on diverse cell physiological aspects such as adhesion, growth, and function. For example, these studies have shown that surfaces with uniform multipls parallel grooves can enhance cell adhesion by confining cells in grooves and by mechanically interlocking them. Several independent studies have demosterated that cell shape is a major determinant of cell growth and function. Because surface morphology has been shown to modulate the extent of cell spreading and cell shape, its effects on cell growth and function appear to be mediated via this biological coupling between cell shape and function. New evidence in the cell biology literature is emerging to suggest that surface morphology could affect other cell behavioral properties such as post-translational modifications. Further elucidation of such effects will enable better designs for implant and cell culture substrata.  相似文献   

15.
The relative cell surface hydrophobicity (CSH) of 18 soil isolates of Pseudomonas fluorescens, determined by phase exclusion, hydrophobic interaction chromatography (HIC), electrostatic interaction chromatography (ESIC), and contact angle, revealed large degrees of variability. Variation in the adhesion efficiency to Macrophomina phaseolina of the hyphae/sclerotia of these isolates was also examined. Two such isolates with maximum (32.8%; isolate 12-94) and minimum (12%; isolate 30-94) CSH were selected for further study. Early- to mid-log exponential cells of these isolates were more hydrophobic than those in stationary phase, and the CSH of these isolates was also influenced by fluctuations in temperatures and pH. Isolate 12-94 exhibited high CSH (32.3%) at 30 degrees C, compared to lower values (28-24%) in the higher temperature range (35-40 degrees C). Increasing concentrations of either Zn2+, Fe3+, K+, and Mg2+ in the growth medium were associated with the increased CSH. Trypsin, pepsin, and proteinase K (75 to 150 micrograms.mL-1) reduced the CSH of isolate 12-94 cells. CSH was reduced, following exposure to DTT, SDS, Triton X-100, or Tween 80. Prolonged exposure of cells to starvation (60 days) also caused a significant decline in CSH. Several protein bands (18, 21, 23, 26 kDa) of the outer cell membrane were absent in 60-day starved cells compared to unstarved cells. In conclusion, our findings demonstrate that CSH of P. fluorescens isolates may contribute to nonspecific attachment/adhesion onto M. phaseolina hyphae/sclerotia, and the efficiency of adhesion is regulated by growth and other environmental conditions.  相似文献   

16.
Substratum adhesion sites from murine Balb/c SVT2 fibroblasts are enriched in heparan sulfate proteoglycans which have been implicated in mediating adhesion of these cells to a fibronectin-adsorbed tissue culture substratum. Most of the heparan sulfate isolated from newly formed adhesion sites is found covalently attached to protein as proteoglycan while a significant portion of heparan sulfate from older sites has been identified as a single-chain species. This observation suggests that there may be catabolism of the heparan sulfate proteoglycan during the "maturation" of these adhesion sites at the cell's undersurface. Zwittergent 3-12 selectively extracts the single-chain class of heparan sulfate from either newly formed or "mature" adhesion sites while leaving the proteoglycan firmly bound in these sites. In an effort to further characterize the metabolism of these proteoglycans, substratum adhesion sites were isolated at various times after the cells had been pulse-radiolabeled using radioactive sulfate and subsequently chased. Greater than 80% of the sulfate-radiolabeled material is lost from the substratum-attached material within 24-48 h. Characterization of both the Zwittergent-soluble and -resistant heparan sulfate indicated that there was an initial accumulation followed by a rapid loss of a portion of the radiolabeled heparan sulfate as the single-chain Zwittergent-soluble class. However, most of the heparan sulfate proteoglycan was lost from the adhesion sites following approximately a 4-h time lag during the chase period without going through a smaller molecular weight intermediate. The turnover properties of the heparan sulfate proteoglycan in the EGTA-detachable cells were different from those in the substratum-attached fraction of the cell. The significance of these two different mechanisms of turnover of heparan sulfate proteoglycan in adhesion sites is discussed in relation to the role of this proteoglycan in mediating adhesion processes.  相似文献   

17.
C Dahlgren 《Cell biophysics》1982,4(2-3):133-141
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conductive to cell polarization, thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cell-substratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

18.
CD44-hyaluronan (HA) interaction is involved in diverse physiological and pathological processes. Regulation of interacting avidity is well studied on CD44 but rarely on HA. We discovered a unique covalent modification of HA with a protein, SHAP, that corresponds to the heavy chains of inter-alpha-trypsin inhibitor family molecules circulating in blood. Formation of the SHAP.HA complex is often associated with inflammation, a well known process involving the CD44-HA interaction. We therefore examined the effect of SHAP on the CD44-HA interaction-mediated lymphocyte adhesion. Under both static and flowing conditions, Hut78 cells (CD44-positive) and CD44-transfected Jurkat cells (originally CD44-negative) adhered preferentially to the immobilized SHAP.HA complex than to HA. The enhanced adhesion is exclusively mediated by the CD44-HA interaction, because it was inhibited by HA, but not IalphaI, and was completely abolished by pretreating the cells with anti-CD44 antibodies. SHAP appears to potentiate the interaction by increasing the avidity of HA to CD44 and altering their distribution on cell surfaces. Large amounts of the SHAP.HA complex accumulate in the hyperplastic synovium of rheumatoid arthritis patients. Leukocytes infiltrated to the synovium were strongly positive for HA, SHAP, and CD44 on their surfaces, suggesting a role for the adhesion-enhancing effect of SHAP in pathogenesis.  相似文献   

19.
Cell-substratum adhesion in the embryonic chicken nervous system has been shown to be mediated in part by a 170,000-mol-wt polypeptide that is a component of adherons. Attachment of retinal cells to the 170,000-mol-wt protein is inhibited by the C1H3 monoclonal antibody and by heparan sulfate (Cole, G. J., D. Schubert, and L. Glaser, 1985, J. Cell Biol., 100:1192-1199). In the present study we have demonstrated that the 170,000-mol-wt C1H3 polypeptide is immunologically identical to the neural cell adhesion molecule N-CAM, and that the 170,000-mol-wt component of N-CAM is preferentially secreted by cells as a component of adherons. We have identified a monoclonal antibody, designated B1A3, that inhibits heparin binding to N-CAM and cell-to-substratum adhesion. A 25,000-mol-wt heparin (heparan sulfate)-binding domain of N-CAM has been identified by limited proteolysis, and this fragment promotes cell attachment when bound to glass surfaces. The fragment also partially inhibits cell binding to adherons when bound to retinal cells, and the B1A3 monoclonal antibody inhibits retinal cell attachment to substrata composed of intact N-CAM or the heparin-binding domain. These data are the first evidence that N-CAM is a multifunctional protein that contains both cell-and heparin (heparan sulfate)-binding domains.  相似文献   

20.
The metabolism of high-density lipoprotein (HDL) in cells of five human cancer cell lines maintained in monolayer culture was investigated. In cells of some of the lines there was evidence of high-affinity binding sites for HDL, whereas in others this could not be demonstrated. However, in one cell line, viz., HEC-B-296 (human endometrial carcinoma), degradation of the protein component of HDL was demonstrated. The proteolytic activity was specific for HDL in so far as human serum albumin was not degraded by these cells. However, this degradative process did not involve internalization of the HDL molecule and degradation was not mediated by lysosomal proteolytic enzymes. HDL, when present in the medium, did not affect the degradation of low-density lipoprotein and low-density lipoprotein did not affect the degradation of HDL. HDL did not affect significantly cholesterol biosynthesis or cholesteryl ester biosynthesis as estimated from the activity of the regulatory enzymes, 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl-CoA:cholesterol acyltransferase. The degradation of HDL by HEC-B-296 cells was inhibited, to various degrees, when trypsin inhibitor or a protease inhibitor such as leupeptin, was present in the culture medium. It is concluded that degradation of the protein component of HDL by human neoplastic cells of the HEC-B-296 line was the result of activity of a proteolytic enzyme that is present on the external surface of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号