首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human endometrial stromal stem cells (hESSCs) can differentiate into mesodermal and ectodermal cellular lineages in the endometrium. However, whether hESSCs can differentiate into functional hepatic-like cells is unknown. In this study, we developed a multiple-step induction protocol to differentiate hESSCs into functional hepatic-like cells in vitro. Endometrial stromal cells were isolated by magnetic affinity sorting using anti-epithelial cell adhesion molecule-coated Dynabeads. The enriched hESSCs were analyzed by flow cytometry and were able to differentiate into osteoblasts or adipocytes under proper induction media. To differentiate into hepatic-like cells, hESSCs were cultured in a stepwise system containing hepatocyte growth factor, fibroblast growth factor-4, oncostatin M, and trichostatin A for a total of 24 d. The hepatic-like cell differentiation was analyzed by confocal microscopy and immunocytochemical staining. Glycogen storage, cellular urea synthesis, and ammonia concentrations were measured. Hepatic-like cells were successfully generated from hESSCs and were identified by their epithelial-like shape characteristics and expression of specific biomarkers albumin and cytokeratin 8 accompanied with a reduction of alpha-fetoprotein and alpha-smooth muscle actin expression. The hepatic-like cells generated were functional as evidenced by urea synthesis and glycogen storage. Our study demonstrated that hESSCs were able to differentiate into hepatic-like cells in vitro. Thus, endometrial stromal cells may be used as an easily accessible alternative source of stem cells for potential therapeutic applications in liver disease.  相似文献   

3.
ObjectivesEx vivo engineered production of megakaryocytes (MKs) and platelets (PLTs) from human pluripotent stem cells is an alternative approach to solve shortage of donor‐donated PLTs in clinics and to provide induced PLTs for transfusion. However, low production yields are observed and the generation of clinically applicable MKs and PLTs from human pluripotent stem cells without genetic modifications still needs to be improved.Materials and MethodsWe defined an optimal, stepwise and completely xeno‐free culture protocol for the generation of MKs from human embryonic stem cells (hESCs). To generate MKs from hESCs on a large scale, we improved the monolayer induction manner to define three‐dimensional (3D) and sphere‐like differentiation systems for MKs by using a special polystyrene CellSTACK culture chamber.ResultsThe 3D manufacturing system could efficiently generate large numbers of MKs from hESCs within 16‐18 days of continuous culturing. Each CellSTACK culture chamber could collect on an average 3.4 × 108 CD41+ MKs after a three‐stage orderly induction process. MKs obtained from hESCs via 3D induction showed significant secretion of IL‐8, thrombospondin‐1 and MMP9. The induced cells derived from hESCs in our culture system were shown to have the characteristics of MKs as well as the function to form proPLTs and release PLTs. Furthermore, we generated clinically applicable MKs from clinical‐grade hESC lines and confirmed the biosafety of these cells.ConclusionsWe developed a simple, stepwise, 3D and completely xeno‐free/feeder‐free/transgene‐free induction system for the generation of MKs from hESCs. hESC‐derived MKs were shown to have typical MK characteristics and PLT formation ability. This study further enhances the clinical applications of MKs or PLTs derived from pluripotent stem cells.  相似文献   

4.
An Aberration in megakaryopoiesis and thrombopoiesis, 2 important processes that maintain hemostasis, leads to thrombocytopenia. Though platelet transfusions are used to treat this condition, blood banks frequently face a shortage of platelets. Therefore, methods to generate platelets on a large scale are strongly desirable. However, to generate megakaryocytes (MKs) and platelets (PLTs) in numbers sufficient for clinical application, it is essential to understand the mechanism of platelet production and explore efficient strategies accordingly. We have earlier reported that the N-6 and N-3 poly-unsaturated fatty acids (PUFAs), Arachidonic acid (AA)/Docosahexanoic acid (DHA) have beneficial effect on the generation of MKs and PLTs from umbilical cord blood derived CD34+ cells. Here we tested if a similar effect is observed with peripheral blood derived CD34+ cells, which are more commonly used in transplantation settings. We found a significant enhancement in cell numbers, surface marker expression, cellular ploidy and expression of cytoskeletal components during PLT biogenesis in cultures exposed to media containing AA/DHA than control cultures that were not exposed to these PUFAs. The test cells engrafted more efficiently in NOD/SCID mice than control cells. AA/DHA appears to have enhanced MK/PLT generation through upregulation of the NOTCH and AKT pathways. Our data show that PUFAs could be valuable additives in the culture system for large scale production of platelets for clinical applications.  相似文献   

5.
Livin is a member of the inhibitor of apoptosis proteins (IAP) family of intracellular antiapoptotic proteins that act by binding and inhibiting caspases. Upon strong apoptotic stimuli, it is then specifically cleaved by caspases to produce a truncated protein (tLivin) with a paradoxical proapoptotic activity. Intriguingly, we have detected robust protein levels of Livin in normal mature bone marrow megakaryocyte (MK) and platelets. To evaluate the potential role of Livin in thrombopoiesis, we used the human BCR-ABL+ cell line, LAMA-84, and cord blood CD34+ cells to induce differentiation toward MKs. Upon differentiation, induced by phorbol myristate acetate and concurrent with increase in Livin protein expression, LAMA-84 cells formed functional platelet-like particles. Livin overexpression in CD34+ progenitor cells induced higher endoreplication in the MKs generated. Furthermore, overexpression of Livin increased the ability of both primary MKs and differentiated LAMA-84 cells to produce functional platelets. In the differentiated LAMA-84 cells, we observed accumulation of proapoptotic tLivin concomitant with increased caspase-3 activity. Downregulation of Livin with small interfering RNA in both leukemic and primary MK cells decreased their ability to produce functional platelets. We suggest that Livin has a role in thrombopoiesis by regulating the apoptotic and antiapoptotic balance in MK endoreplication and platelet production.  相似文献   

6.
Valproic acid (VPA), a histone deacetylase inhibitor, causes differentiation in different cell lines and in a cell-specific manner; yet, its effect on megakaryocytic (MK) differentiation has not been studied. We evaluated whether VPA induces MK differentiation in a UT-7 cell line through histone acetylation in the GpIIIa gene region and activation of the ERK pathway. UT-7 cells, derived from megakaryoblastic leukemia, were treated with VPA at various concentrations, and the expression of differentiation markers as well as the gene expression profile was assessed. Flow cytometry, immunoblot analysis, and RT-PCR demonstrated that VPA induced the expression of the early MK markers GpIIIa (CD61) and GpIIb/IIIa (CD41) in a dose-dependent manner. The VPA-treated cells showed hyperacetylation of the histones H3 and H4; in particular, histone acetylation was found to have been associated with CD61 expression, in that the GpIIIa promoter showed H4 hyperacetylation, as demonstrated by the chromatin immunoprecipitation assay. Furthermore, activation of the ERK pathway was involved in VPA-mediated CD61/CD41 expression and in cell adhesion, as demonstrated by using the MEK/ERK inhibitor U0126. In conclusion, the capacity of VPA to commit UT-7 cells to MK differentiation is mediated by its inhibitory action on HDAC and the long-lived activation of ERK1/2.  相似文献   

7.
Immunostaining with NJ-1 monoclonal antibody (MoAb) revealed that NJ-1 is expressed on megakaryocytes (MKs). NJ-1-positive and lineage-negative progenitor cells have a higher potency to proliferate and differentiate into MKs. MKs were divided into NJ-1(+)MKs and NJ-1(-)MKs. NJ-1(+)MKs are immature MKs because of their low potential to generate pro-platelets. When cultured CD41-positive MK cells were analyzed with RT-PCR, we found that the expression of NJ-1 is down-regulated. NJ-1(+)MKs have a high adherent potential to endothelial cells comparing with NJ-1(-)MKs, and this binding ability could be inhibited by the NJ-1-Fc fusion protein. We hypothesize that NJ-1(+)MKs are immature MKs and the NJ-1 molecule is involved in MK adhesion to endothelial cells.  相似文献   

8.
Platelets are produced from megakaryocytes (MKs), although the pathway leading from stem cells to MK lineages are not yet fully understood. Recently, we reported to obtain abundant MKs and platelets from human subcutaneous adipose tissues. Adipose tissues contain various cell types, most of which are lineage cells from mesenchymal or adipocyte-derived stem cells, distinct from hematopoietic cells. To identify the cells responsible for the differentiation MK lineages in adipose tissues, this study examined whether the preadipocyte cell line 3T3-L1 and fibroblast cell line 3T3 differentiated into MK lineages in vitro. Cells were cultured in megakaryocyte lineage induction medium. By day 4, most of 3T3 cell-derived cells leaded to cell death. In contrast, 3T3-L1-derived cells on days 8 showed to have typical characterizations of MK lineages in analyses for specific marker, DNA ploidy, transmission electro micrograph. 3T3-L1-derived platelet-sized cells on day 12 could be stimulated by ADP and PAR4-activating peptide. This study clearly shows in vitro differentiation from 3T3-L1 cells, not from 3T3 cells, into MK lineages.  相似文献   

9.
10.
11.
Ma DC  Jin BQ  Sun YH  Chang KZ  Dai B  Chu JJ  Liu YG 《生理学报》2001,53(4):296-302
为了解胚胎时期巨核细胞增殖分化特有的内在机制,本研究观察了在体外培养体系中,胎肝源CD34+造血干/祖细胞在血小板生成素(thrombopoietin,TPO)作用下增殖分化特征与相关周期蛋白B1、D1和D3表达及细胞内水平变化的关系。结果发现(1)经12d培养后,TPO使胎肝源CD34  相似文献   

12.
In this study, we characterize new multipotent human mesenchymal stem cell lines (MSCs) derived from desquamated (shedding) endometrium of menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSCs of any origin. The eMSCs have positive expression of CD13, CD29, CD44, CD73, CD90, and CD105 markers and lack hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130, and HLA-DR (class II). Multipotency of the established eMSCs is confirmed by their ability to differentiate into other mesodermal lineages, such as osteocytes and adipocytes. In addition, the isolated eMSCs partially (over 50%) express the pluripotency marker SSEA-4. However, they do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and β-III-tubulin. This suggests a neural predisposition of the established eMSCs. These cells are characterized by a high proliferation rate (doubling time 22–23 h) and a high colony-forming efficiency (about 60%). In vitro, the eMSCs undergo more than 45 population doublings without karyotypic abnormalities. We demonstrate that mitotically inactivated eMSCs are perfect feeder cells for maintenance of human embryonic stem cell lines (hESCs) C612 and C910. The eMSCs, being a feeder culture, sustain the hESC pluripotent status that verified by expression of Oct-4, alkaline phosphatase and SSEA-4 markers. The hESCs cocultured with the eMSCs retain their morphology and proliferative rate for more than 40 passages and exhibit the capability for spontaneous differentiation into embryoid bodies comprising three embryonic germ layers. Thus, an easy and noninvasive isolation of the eMSCs from menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESCs to clinical setting.  相似文献   

13.
14.
In this study, we characterize new multipotent human mesenchymal stem cell (MSC) lines derived from desquamated (shedding) endometrium in menstrual blood. The isolated endometrial MSC (eMSC) is an adhesive to plastic heterogeneous population composed mainly of endometrial glandular and stromal cells. The established cell lines meet the criteria of the International Society for Cellular Therapy for defining multipotent human MSC of any origin. The eMSCs have positive expression of CD73, CD90, CD105, CD13, CD29, CD44 markers and the absence of expression of the hematopoietic cell surface antigens CD19, CD34, CD45, CD117, CD130 and HLA-DR (class II). Multipotency of the established eMSC is confirmed by their ability to differentiate into other mesodermal cell types such as osteocytes and adipocytes. Besides, the isolated eMSC lines partially (over 50%) express the pluripotency marker SSEA-4, but do not express Oct-4. Immunofluorescent analysis of the derived cells revealed the expression of the neural precursor markers nestin and beta-III-tubulin. This suggests a neural predisposition of the established eMSC. These cells are characterized by high rate of cell proliferation (doubling time 22-23 h) and high cloning efficiency (about 60%). In vitro the eMSCs undergo more than 45 population doublings revealing normal karyotype without karyotipic abnormalilies. We demonstrate, that the mititotically inactivated eMSCs are perfect feeder cells for human embryonic stem cell lines (hESC) C612 and C910. The eMSC being a feeder culture maintain the pluripotent status of the hESC, which is revealed by the expression of Oct-4, alkaline phosphatase and SSEA-4. When co-culturing, hESC retain their morphology, proliferative rate for more than 40 passages and capability for spontaneous differentiation into embryoid bodies comprising the three embryonic germ layers. Thus, an easy and non-invasive extraction of the eMSC in menstrual blood, their multipotency and high proliferative activity in vitro without karyotypic abnormalities demonstrate the potential of use of these stem cells in regenerative medicine. Using the derived eMSCs as the feeder culture eliminates the risks associated with animal cells while transferring hESC to clinical setting.  相似文献   

15.
Estrogen has multifunctional effects influencing growth, differentiation, and function in many tissues. High-dose estrogen has been shown to produce anabolic skeletal effects in the skeleton of postmenopausal women with increased megakaryocyte (MK) population in the bone marrow, suggesting a possible role for these cells in bone remodelling. To investigate if estrogen stimulates megakaryocytopoiesis and affects on estrogen receptor (ER) expression, CD34(+) cells were cultured for 6, 9, and 14 days plus or minus low-dose or high-dose 17 beta estradiol (E). Cells were immunolocalised for CD61, CD41, ER alpha and beta. ER mRNA expression was assessed by RT-PCR. Cells formed more CD61 positive MK colonies with low- and high-dose E treatment (P < 0.001) at 6 and 9 days. CD41 expression was increased dose-dependently in MK (3- and 5-fold P < 0.001) at 9 days. E-stimulated ER alpha expression at 6 days (P < 0.001) whilst ER beta was dose-dependently increased only at 9 days (P < 0.01). ER alpha mRNA was increased at 6 days but not at 14 days whilst ER beta mRNA expression was only increased at 14 days with E treatment. These results demonstrate that E stimulates the colony forming potential of CD34(+) cells to a more megakaryocytic phenotype in vitro. This finding together with the stimulation of ER protein and mRNA expression adds to the increasing evidence for a role for MKs in estrogen-induced bone formation.  相似文献   

16.
Root stem cell niche (SCN) consists of a quiescent center (QC) and surrounding stem cells. Disrupted symplastic communication leads to loss of stemness in the whole SCN. Several SCN regulators were reported to move between cells for SCN maintenance. However, single mutant of these regulators is insufficient to abolish QC stemness despite the high differentiation rate in surrounding stem cells. To dissect the mechanism behind such distinct stemness in SCN, we combined the mis‐expression strategy with pWOX5:icals3m system in which QC is symplastically isolated. We found the starch accumulation in QC could be synergistically repressed by WUSCHEL‐RELATED HOMEOBOX 5 (WOX5), SHORT‐ROOT (SHR), SCARCROW (SCR), and PLETHORA (PLT). Like PLTs, other core regulators also exhibited dimorphic functions by inhibiting differentiation at a higher dose while promoting cell division at a low protein level. Being located in the center of the intersected expression zones, QC cells receive the highest level of core regulators, forming the most robust stemness within SCN. WUSCHEL‐RELATED HOMEOBOX 5 was sufficient to activate PLT1/2 expression, contributing to the QC‐enriched PLTs. Our results provide experimental evidence supporting the long‐standing hypothesis that the combination of spatial expression, synergistic function and dosage effect of core regulators result in spatially distinct stemness in SCN.  相似文献   

17.
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory collagen receptor which belongs to the immunoglobulin (Ig) superfamily. Although the inhibitory function of LAIR-1 has been extensively described in multiple leukocytes, its role in megakaryocyte (MK) has not been explored so far. Here, we show that LAIR-1 is expressed on human bone marrow CD34+CD41a+ and CD41a+CD42b+ cells. LAIR-1 is also detectable in a fraction of human cord blood CD34+ cell-derived MK that has morphological characteristics of immature MK. In megakaryoblastic cell line Dami, the membrane protein expression of LAIR-1 is up-regulated significantly when cells are treated with phorbol ester phorbol 12-myristate 13-acetate (PMA). Furthermore, cross-linking of LAIR-1 in Dami cells with its natural ligand or anti-LAIR-1 antibody leads to the inhibition of cell proliferation and PMA-promoted differentiation when examined by the MK lineage-specific markers (CD41a and CD42b) and polyploidization. In addition, we also observed that cross-linking of LAIR-1 results in decreased MK generation from primary human CD34+ cells cultured in a cytokines cocktail that contains TPO. These results suggest that LAIR-1 is a likely candidate for an early marker of MK differentiation, and provide initial evidence indicating that LAIR-1 serves as a negative regulator of megakaryocytopoiesis.  相似文献   

18.
Megakaryocytes (MK) undergo polyploidization through endomitosis, a mitotic process that ends prematurely due to aborted cytokinesis. To better understand this and other events associated with MK differentiation, we performed long-term and large-field live cell imaging of human MKs derived in cord blood (CB) and bone marrow (BM) CD34+ cell cultures. Polyploid level of imaged cells was evaluated using three complementary approaches; cell history, cell size and ploidy correlation and nuclei staining. This system and strategy enabled the direct observation of the development of a large number of MKs (n=4865) and to quantify their fates. The most significant finding of this study is that a considerable proportion of polyploid MKs could complete cytokinesis. This unexpected process gave rise to polyploid daughter cell(s) with normal fates and contributed significantly to the expansion of polyploid MKs. Further analyses revealed that the proliferation rate amongst polyploid MKs was inversely correlated to their ploidy level, and that this phenomenon was much more frequent in CB- than BM-derived MKs. Accordingly, endomitosis was identified as the dominant fate of polyploid BM-MKs, while this was less accentuated for polyploid CB-MKs. These findings explain partially why CB-derived MKs remain in lower ploidy class. In conclusion, this study demonstrates that the development of polyploid MK results from the failure and/or success of cytokinesis and brings a new paradigm to the field of megakaryopoiesis.  相似文献   

19.
Clonogenicity of human endometrial epithelial and stromal cells   总被引:20,自引:0,他引:20  
The human endometrium regenerates from the lower basalis layer, a germinal compartment that persists after menstruation to give rise to the new upper functionalis layer. Because adult stem cells are present in tissues that undergo regeneration, we hypothesized that human endometrium contains small populations of epithelial and stromal stem cells responsible for cyclical regeneration of endometrial glands and stroma and that these cells would exhibit clonogenicity, a stem-cell property. The aims of this study were to determine 1) the clonogenic activity of human endometrial epithelial and stromal cells, 2) which growth factors support this clonogenic activity, and 3) determine the cellular phenotypes of the clones. Endometrial tissue was obtained from women undergoing hysterectomy. Purified single- cell suspensions of epithelial and stromal cells were cultured at cloning density (300-500/cm(2)) in serum medium or in serum- free medium supplemented with one of eight growth factors. Small numbers of epithelial (0.22%) and stromal cells (1.25%) initiated colonies in serum-containing medium. The majority of colonies were small, containing large, loosely arranged cells, and 37% of epithelial and 1 in 60 of stromal colonies were classified as large, comprising small, densely packed cells. In serum-free medium, transforming growth factor-alpha (TGF alpha), epidermal growth factor (EGF), platelet-derived growth factor-BB (PDGF-BB) strongly supported clonogenicity of epithelial cells, while leukemia-inhibitory factor (LIF), hepatocyte growth factor (HGF), stem-cell factor (SCF), insulin-like growth factor-I (IGF- I) were weakly supportive, and basic fibroblast growth factor (bFGF) was without effect. TGF alpha, EGF, PDGF-BB, and bFGF supported stromal cell clonogenicity, while HGF, SCF, LIF, and IGF- I were without effect. Small epithelial colonies expressed three epithelial markers but not stromal markers; however, large epithelial colonies showed little reactivity for all markers except alpha(6)-integrin. All stromal colonies contained fibroblasts, expressing stromal markers, and in some colonies, myofibroblasts were also identified. This analysis of human endometrium has demonstrated the presence of rare clonogenic epithelial and stromal cells with high proliferative potential, providing the first evidence for the existence of putative endometrial epithelial and stromal stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号