首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ACK (activated Cdc42-associated tyrosine kinase) (also Tnk2) is an ubiquitin-binding protein and plays an important role in ligand-induced and ubiquitination-mediated degradation of epidermal growth factor receptor (EGFR). Here we report that ACK is ubiquitinated by HECT E3 ubiquitin ligase Nedd4-1 and degraded along with EGFR in response to EGF stimulation. ACK interacts with Nedd4-1 through a conserved PPXY WW-binding motif. The WW3 domain in Nedd4-1 is critical for binding to ACK. Although ACK binds to both Nedd4-1 and Nedd4-2 (also Nedd4L), Nedd4-1 is the E3 ubiquitin ligase for ubiquitination of ACK in cells. Interestingly, deletion of the sterile alpha motif (SAM) domain at the N terminus dramatically reduced the ubiquitination of ACK by Nedd4-1, while deletion of the Uba domain dramatically enhanced the ubiquitination. Use of proteasomal and lysosomal inhibitors demonstrated that EGF-induced ACK degradation is processed by lysosomes, not proteasomes. RNA interference (RNAi) knockdown of Nedd4-1, not Nedd4-2, inhibited degradation of both EGFR and ACK, and overexpression of ACK mutants that are deficient in either binding to or ubiquitination by Nedd4-1 blocked EGF-induced degradation of EGFR. Our findings suggest an essential role of Nedd4-1 in regulation of EGFR degradation through interaction with and ubiquitination of ACK.Activated Cdc42-associated tyrosine kinase (ACK) (also Tnk2) is a member of the type VIII tyrosine kinase family. Activation of ACK, including both ACK1 and ACK2, occurs in response to signaling of epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF) receptor, insulin receptor, Gas-6 receptor (Mer), M3 muscarinic receptor, integrins, or proteoglycan (3, 7, 11, 23, 26, 30, 44, 47). In Drosophila, D-ACK mediates the function of Cdc42 in dorsal closure during embryonic development (31). The ACK homologue, Ark-1, in Caenorhabditis elegans negatively regulates EGF signaling (15).A number of studies suggest a role for ACK in EGFR degradation. ACK1 and ACK2, two alternatively spliced isoforms, possess a highly conserved clathrin-binding motif and interact with clathrin (37, 45). Overexpression of ACK2 severely impairs transferrin receptor endocytosis, causes aberrant localization of AP-2, and induces changes in clathrin assembly. Furthermore, ACK2 interacts with sorting nexin 9 (SNX9, also named SH3PX1), a member of the sorting nexin family, via its proline-rich domain 1 and phosphorylates SNX9 to facilitate the degradation of EGF receptors (22). In C. elegans, Ark-1 genetically interacts with UNC101, the homologue of mammalian clathrin-associated protein AP47, and SLI-1, the homologue of mammalian Cbl that is an E3 ubiquitin ligase for ubiquitination of EGFR, and negatively regulates EGFR signaling (15).Our previous studies showed that ACK1 interacts with EGFR upon EGF stimulation via a region at the carboxyl terminus, designated the EGFR-binding domain (EBD), which is highly homologous to the EGFR/ErbB2-binding domain of Gene-33/Mig-6/RALT (32, 43). The interaction of ACK1 with EGFR is dependent on kinase activity and tyrosine phosphorylation of EGFR. Immunofluorescent staining using anti-EGFR and GFP-ACK1 indicates that ACK1 is colocalized with EGFR on large vacuolar structures upon EGF stimulation. Suppression of the expression of ACK1 by ACK-RNA interference (RNAi) inhibits ligand-induced degradation of EGFR, suggesting that ACK1 plays an important role in the regulation of EGFR degradation in cells. Furthermore, we identified ACK1 as an ubiquitin-binding protein. Through an ubiquitin association (Uba) domain at the carboxyl terminus, ACK1 is capable of interacting with both poly- and monoubiquitin. Overexpression of an Uba domain deletion mutant of ACK1 blocked the ligand-dependent degradation of EGFR, suggesting that ACK1 regulates EGFR degradation via its Uba domain. Thus, ACK1 senses EGF signaling and regulates degradation of EGFR.EGF-induced degradation of EGFR is mediated by ubiquitination (16). The ubiquitination of EGFR is activated upon EGF stimulation by recruiting the RING family E3 ubiquitin ligase Cbl to pY1045 (20, 21). This ubiquitination functions as a sorting signal for transporting EGFR to lysosomes for degradation (14). Nedd4, the HECT domain-containing E3 ubiquitin ligase, is also involved in the regulation of EGFR trafficking by ubiquitination of endocytic or vesicle sorting proteins (28). For example, it has been observed that Nedd4 ubiquitinates Cbl, Eps15, Tsg101, Hrs, and secretory carrier membrane proteins (SCAMPs) and participates in the processes of EGFR endocytosis and degradation (1, 18, 25, 42). However, exactly how Nedd4 engages in the EGFR degradation process in response to EGF stimulation is not known.In this report, we show that EGF stimulation induces ACK degradation. This degradation is associated with ubiquitination of ACK. Nedd4-1, but not Nedd4-2, is identified as the E3 ubiquitin ligase for ubiquitination of ACK. Furthermore, EGF-induced degradation of ACK is EGFR activation dependent and processed by lysosomes. RNAi knockdown and mutational analysis demonstrated that Nedd4-1 and Nedd4-1-catalyzed ubiquitination of ACK are required for EGF-induced degradation of EGFR and ACK. Our findings suggest a new mechanism in regulation of EGFR degradation.  相似文献   

2.
Abstract

Unlike EGF, concanavalin A and wheat germ agglutinin do not increase EGF receptor-kinase activity in intact A-431 membranes. However, they increase both autophosphorylation and phosphorylation of exogenous substrates about twice as much as EGF if the membranes are solubilized in detergent. Following solubilization, autophosphorylation due to the combined presence of a lectin and EGF is additive suggesting that each increases kinase activity by a different mechanism. These different mechanisms were studied by autophosphorylating membranes at increasing detergent concentrations after they had been permeabilized to [γ?32P]ATP with alamethicin. As the detergent concentration increased, EGF stimulated autophosphorylation decreased 3–fold and 6–fold for the native 170 kDa receptor and for a protease-generated 150 kDa receptor form, respectively. However, in the presence of either lectin the same increase in detergent concentration only slightly altered the autophosphorylation rates which never exceeded the rate measured in the absence of EGF and detergent. Hence, the lectins increase kinase activity in solubilized membranes by preventing the adverse effects of detergent on the receptor-kinase and may not be useful models for how EGF activates its receptor.  相似文献   

3.
ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10-Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1.  相似文献   

4.
The tyrosine kinase ACK1 phosphorylates and activates the guanine nucleotide exchange factor Dbl, which in turn directs the Rho family GTP-binding proteins. However, the regulatory mechanism of ACK1/Dbl signaling in response to extracellular stimuli remains poorly understood. Here we describe that epidermal growth factor stimulates the ACK1/Dbl pathway, leading to actin cytoskeletal rearrangements. The role of the two ACK1-binding proteins Cdc42 and Grb2 was assessed by overexpression of the Cdc42/Rac interactive binding domain and a dominant-negative Grb2 mutant, respectively. Specific inhibition of the interaction of ACK1 with Cdc42 or Grb2 by the use of these constructs diminished tyrosine phosphorylation of both ACK1 and Dbl in response to EGF. Therefore, the activation of ACK1 and subsequent downstream signaling require both Cdc42-dependent and Grb2-dependent processes within the cell. In addition, we show that EGF transiently induces formation of the focal complex and stress fibers when ACK1 was ectopically expressed. The induction of these structures was totally sensitive to the action of botulinum toxin C from Clostridium botulinum, suggesting a pivotal role of Rho. These results provide evidence that ACK1 acts as a mediator of EGF signals to Rho family GTP-binding proteins through phosphorylation and activation of GEFs such as Dbl.  相似文献   

5.
6.
Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR (HER/ErbB) family receptors and growth factor receptor PTKs in general.  相似文献   

7.
Cdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion. Expression of either GTP- or GDP-locked Cdc42p mutants caused several morphological defects including enlarged cells and fragmented vacuoles. Stimulation of multiple rounds of fusion enhanced vacuole fragmentation, suggesting that cycles of Cdc42p activation, involving rounds of GTP binding and hydrolysis, are required to propagate Cdc42p signaling. We developed an assay to directly examine Cdc42p activation based on affinity to a probe derived from the p21-activated kinase effector, Ste20p. Cdc42p was rapidly activated during vacuole membrane fusion, which kinetically coincided with priming subreaction. During priming, Sec18p ATPase activity dissociates SNARE complexes and releases Sec17p, however, priming inhibitors such as Sec17p and Sec18p ligands did not block Cdc42p activation. Therefore, Cdc42p activation seems to be a parallel subreaction of priming, distinct from Sec18p activity. Specific mutants in the ergosterol synthesis pathway block both Sec17p release and Cdc42p activation. Taken together, our results define a novel sterol-dependent subreaction of vacuole priming that activates cycles of Cdc42p activity to facilitate membrane fusion.  相似文献   

8.
以大鼠成骨肉瘤细胞(UMR106)为模型,研究了表皮生长因子(EGF)对其受体酪氨酸蛋白激酶(TPK)的调节作用。以本实验室从植物中提取纯化的二萜类活性物质(RFP134)为诱导分化剂,观察了RFP134对UMR106细胞EGF受体TPK的活性和磷酸化作用的影响,并与RA和RFP134+RA处理细胞做了比较,结果显示EGF与其受体结合后能激活TPK,使TPK活性增加2倍.RFP134,RA,RFP134+RA处理细胞后,分别降低EGF诱导的受体TPK活性50%,43%,55%,降低磷酸化TPK含量55%,36%,53%。从结果中发现无EGF刺激的细胞也具有受体TPK磷酸化作用,用RFP134,RA,RFP134+RA处理细胞,分别降低受体磷酸化TPK含量59%,40%,57%,而且我们发现用EGF诱导的细胞受体TPK含量高于无EGF作用的细胞.提示UMR106细胞本身可能具有受体TPK活性,能够引起细胞受体自动磷酸化,EGF刺激后TPK的磷酸化作用增强,可见RFP134对EGF诱导的TPK磷酸化和无EGF诱导的受体自动磷酸化都具有明显的抑制作用,(并强于RA)这可能与在第二信使水平上阻抑PTPK活性密切相关  相似文献   

9.
In both physiological and cell culture systems, EGF-stimulated ERK activity occurs in discrete pulses within individual cells. Many feedback loops are present in the EGF receptor (EGFR)-ERK network, but the mechanisms driving pulsatile ERK kinetics are unknown. Here, we find that in cells that respond to EGF with frequency-modulated pulsatile ERK activity, stimulation through a heterologous TrkA receptor system results in non-pulsatile, amplitude-modulated activation of ERK. We further dissect the kinetics of pulse activity using a combination of FRET- and translocation-based reporters and find that EGFR activity is required to maintain ERK activity throughout the 10–20-minute lifetime of pulses. Together, these data indicate that feedbacks operating within the core Ras-Raf-MEK-ERK cascade are insufficient to drive discrete pulses of ERK activity and instead implicate mechanisms acting at the level of EGFR.  相似文献   

10.
Tumorigenesis requires the concerted action of multiple pathways, including pathways that stimulate proliferation and metabolism. Epidermal growth factor receptor (EGFR) is a transmembrane receptor-tyrosine kinase that is associated with cancer progression, and the EGFR inhibitors erlotinib/tarceva and tyrphostin/AG-1478 are potent anti-cancer therapeutics. Pgrmc1 (progesterone receptor membrane component 1) is a cytochrome b5-related protein that is up-regulated in tumors and promotes cancer growth. Pgrmc1 and its homologues have been implicated in cell signaling, and we show here that Pgrmc1 increases susceptibility to AG-1478 and erlotinib, increases plasma membrane EGFR levels, and co-precipitates with EGFR. Pgrmc1 co-localizes with EGFR in cytoplasmic vesicles and co-fractionates with EGFR in high density microsomes. The findings have therapeutic potential because a Pgrmc1 small molecule ligand, which inhibits growth in a variety of cancer cell types, de-stabilized EGFR in multiple tumor cell lines. EGFR is one of the most potent receptor-tyrosine kinases driving tumorigenesis, and our data support a role for Pgrmc1 in promoting several cancer phenotypes at least in part by binding EGFR and stabilizing plasma membrane pools of the receptor.  相似文献   

11.
袁江兰  刘晖  康旭  邹国林 《生物工程学报》2008,24(10):1813-1817
染料木素是表皮生长因子受体酪氨酸激酶结构域(EGFR-TK)高度特异的非竞争性抑制剂.本研究采用AUTODOCK3.05分子对接软件包对EGFR-TK与染料木素进行了模拟对接研究,探究了二者的相互作用机制,为染料木素的抗肿瘤机制提供理论依据.对接结果表明,染料木素结合在EGFR-TK的活性腔中,与EGFR-TK发生了强烈的相互作用,结合自由能△G为-31.2 kJ/mol;染料木素通过干扰TK催化活性结构中Lys721/Glu738离子对的形成而抑制了EGFR-TK的活性,属于非竞争性结合和抑制作用;在结合中,疏水力和氢键发挥了重要作用.  相似文献   

12.
Hepatocyte growth factor (HGF) stimulated cell migration of human gastric carcinoma cell lines MKN1, MKN7, and MKN28. Epidermal growth factor (EGF) also stimulated the cell migration of these three cell lines. In MKN7 cells, HGF-stimulated cell migration was rather reduced in the presence of EGF, whereas such an observation was not made with MKN1 and MKN28 cells. Therefore, we compared the effect of EGF on HGF-stimulated HGF receptor phosphorylation in these cell lines. HGF induced a rapid tyrosine phosphorylation of the HGF receptor in all these cell lines. In MKN7 cells, the increased phosphorylation was further enhanced by EGF, although EGF alone did not affect tyrosine phosphorylation of the HGF receptor. In MKN1 and MKN28 cells, EGF did not influence tyrosine phosphorylation of the HGF receptor, whether HGF was present or not. The data presented here suggest that EGF negatively modulates the cellular response to HGF by increasing tyrosine phosphorylation of the HGF receptor in certain types of epithelial cells, e.g., MKN7 cells.  相似文献   

13.
表皮生长因子受体(EGFR)是一种存在于细胞表面的多功能跨膜蛋白分子,具有酪氨酸蛋白激酶活性,EGFR与配体结合后启动细胞内信号传导通路,不同的通路之间存在交叉对话(Cross-talks)共同完成细胞生理功能.对EGFR的深入研究,不仅可阐明细胞生长和发育等重要的生命过程,而且在医药和工业上也将有广泛的应用.  相似文献   

14.

Purpose

To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy.

Patients and Methods

Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical simulation using the State Space Model (SSM). “Gefitinib-sensitive” genes, the expressional dynamics of which were altered by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical specimens of lung cancer.

Results

The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P = 0.029) and 3.26 (P = 0.0072), respectively. It also enabled the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS and recurrence-free survival (RFS) with HRs of 8.79 (P = 0.001) and 3.72 (P = 0.0049), respectively.

Conclusion

The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-stage lung adenocarcinoma patients with a poor prognosis.

Trial Registration

The Gene Expression Omnibus (GEO) GSE31210  相似文献   

15.
孙夕林  赵周社  李宏利  申宝忠 《生物磁学》2012,(29):5635-5637,5642
目的:[^18F]标记表皮生长因子受体酪氨酸激酶抑制剂(EGFR—TKI)正电子显像剂在指导肿瘤分子靶向治疗中具有非常重要的作用。本文目的是找到一种全自动、适合日常使用的[^18F]标记EGFR-TKI正电子显像剂的全自动合成方法。方法:采用一步法合成[^18F]EGFR-TKIPET显像剂。首先合成4-[^18F]氟苯胺基,然后合成4-[^18F]氟苯胺基-6,7-二甲氧基喹唑啉。结果:整个合成过程大约60分钟,产率25%.35%(未校正),放化纯度〉95%。结论:本文建立了一种适合临床日常应用的[^18F]EGFR-TKIPET显像剂的全自动合成方法。该方法对于进一步开发新型[^18F]标记的表皮生长因子受体抑制剂PET显像具有重要价值。  相似文献   

16.
The interaction between the tumor cells in classical Hodgkin lymphoma (cHL) and the microenvironment includes aberrant activity of receptor tyrosine kinases. In this study we evaluated the expression, functionality and prognostic significance of Insulin-like growth factor-1 receptor (IGF-1R) in cHL. IGF-1R was overexpressed in 55% (44/80) of cHL patients. Phosphorylated IGF-1R was detectable in a minority of the IGF-1R positive tumor cells. The overall survival (OS, 98%) and 5-year progression-free survival (PFS, 93%) was significantly higher in IGF-1R positive cHL patients compared to IGF-1R negative patients (OS 83%, p = .029 and PFS 77%, p = .047, respectively). Three cHL cell lines showed expression of IGF-1R, with strong staining especially in the mitotic cells and expression of IGF-1. IGF-1 treatment had a prominent effect on the cell growth of L428 and L1236 cells and resulted in an increased phosphorylation of IGF1R, Akt and ERK. Inhibition of IGF-1R with cyclolignan picropodophyllin (PPP) decreased cell growth and induced a G2/M cell cycle arrest in all three cell lines. Moreover, a decrease in pCcd2 and an increase in CyclinB1 levels were observed which is consistent with the G2/M cell cycle arrest. In conclusion, IGF-1R expression in HRS cells predicts a favorable outcome, despite the oncogenic effect of IGF-1R in cHL cell lines.  相似文献   

17.
ACK1 (activated Cdc42-associated kinase 1) is a nonreceptor tyrosine kinase and the only tyrosine kinase known to interact with Cdc42. To characterize the enzymatic properties of ACK, we have expressed and purified active ACK using the baculovirus/Sf9 cell system. This ACK1 construct contains (from N to C terminus) the kinase catalytic domain, SH3 domain, and Cdc42-binding Cdc42/Rac interactive binding (CRIB) domain. We characterized the substrate specificity of ACK1 using synthetic peptides, and we show that the specificity of the ACK1 catalytic domain most closely resembles that of Abl. Purified ACK1 undergoes autophosphorylation, and autophosphorylation enhances kinase activity. We identified Tyr284 in the activation loop of ACK1 as the primary autophosphorylation site using mass spectrometry. When expressed in COS-7 cells, the Y284F mutant ACK1 showed dramatically reduced levels of tyrosine phosphorylation. Although the SH3 and CRIB domains of purified ACK1 are able to bind ligands (a polyproline peptide and Cdc42, respectively), the addition of ligands did not stimulate tyrosine kinase activity. To characterize potential interacting partners for ACK1, we screened several SH2 and SH3 domains for their ability to bind to full-length ACK1 or to the catalytic-SH3-CRIB construct. ACK1 interacts most strongly with the SH3 domains of Src family kinases (Src or Hck) via its C-terminal proline-rich domain. Co-expression of Hck with kinase-inactive ACK1(K158R) in mammalian cells resulted in tyrosine phosphorylation of ACK1, suggesting that ACK1 is a substrate for Hck. Our data suggest that Hck is a novel binding partner for ACK1 that can regulate ACK1 activity by phosphorylation.  相似文献   

18.
1. Exposure of PC12 cells to nerve growth factor (NGF) induces an early tyrosine phosphorylation of many proteins, a number of which is still unidentified. Although NGF is known to bind to and activate the receptor tyrosine kinase TrkA, many downstream targets of NGF signaling may be possibly phosphorylated by nonreceptor tyrosine kinases such as c-Src and focal adhesion kinase (FAK). 2. In the present study, exposure of TrkA-overexpressing PC12 cells to NGF is found to cause a rapid and sustained loss in the recovery of a subpopulation of nominally active FAK (i.e., being autophosphorylated on the positive site of regulation). 3. Consistent with the possibility that NGF induces the proteolysis of FAK via recruitment of Src family kinases, the use of various phosphorylation site-specific anti-FAK antibodies revealed an NGF-inducible and PP1-sensitive accumulation of a putative fragment (i.e., p62) of FAK. Significantly, the mitogenic epidermal growth factor (EGF) failed to induce the downregulation of FAK and the accumulation of tyrosine phosphorylated p62. Such differential response of FAK to NGF and EGF may shape the specificity by which these growth factors control the status of cell-matrix adhesion and the adhesion-driven signaling.  相似文献   

19.
A pool of MAPK was found in hepatic plasma membrane (PM) and endosomes (ENs). After injection of a single dose of EGF (10 μg/100 g body weight), MAPK was detected in EGF receptor (EGFR) immunoprecipitates prepared from ENs. MAPK was detected in a time-dependent manner in EGFR immunoprecipitates that was coincident with the progressive concentration of the EGFR. The EGFR-associated MAPK was also detected by using an anti-phospho-MAPK suggesting that it was active. MAPK was present in wheat-germ agglutinin (WGA) eluates prepared from ENs and was maximally tyrosine-phosphorylated at the time peak of EGFR internalization. MAPK therefore is compartmentalized in PM and ENs of rat liver. A fraction of the endosomal MAPK was found to be associated with the internalized EGFR complexes, suggesting that it plays a role in the control of the EGFR activity at this locus.  相似文献   

20.

Background

Patients with early-stage lung cancer who have a high baseline lymphocyte-to-monocyte ratio (LMR) have a favorable prognosis. However, the prognostic significance of LMR in patients with advanced-stage EGFR-mutant non-small cell lung cancer (NSCLC) receiving first-line epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has not been established. We conducted a retrospective analysis to investigate the influence of LMR on clinical outcomes including progression-free survival (PFS) and overall survival (OS) in EGFR-mutant patients with NSCLC.

Materials and Methods

Of 1310 lung cancer patients diagnosed between January 2011 and October 2013, 253 patients receiving first-line EGFR-TKIs for EGFR-mutant NSCLC were included. The cut-off values for baseline and the 1-month-to-baseline ratio of LMR (MBR), determined by using receiver operating characteristic curves, were 3.29 and 0.63, respectively. Patients were divided into 3 prognostic groups: high LMR and MBR, high LMR or MBR, and low LMR and MBR.

Results

The mean patient age was 65.2 years, and 41% were men. The median PFS and OS were 10.3 and 22.0 months, respectively. The PFS in patients with high LMR and MBR, high LMR or MBR, and low LMR and MBR were 15.4, 7.1, and 2.0 months, respectively (p < 0.001), whereas the OS were 32.6, 13.7, and 5.1 months, respectively (p < 0.001).

Conclusion

A combination of baseline and trend of LMR can be used to identify patients with a high mortality risk in EGFR-mutant NSCLC patients receiving first-line EGFR-TKIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号