首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Clinical outcomes of fresh embryo transfer in non-hCG triggered in vitro maturation (IVM) cycles are inferior compared to vitrified-warmed embryo transfer. This is a prospective observational pilot study in a consecutive cohort of 31 polycystic ovary syndrome (PCOS) patients and 37 normo-ovulatory egg donors who underwent IVM without fresh embryo transfer between July 2009 and June 2014. All subjects received 150 IU of highly purified menotropin (HP-hMG) daily for three days. On cycle day 6, all patients started transdermal oestradiol (E2) at a daily dose of 9 mg. There was no human chorionic gonadotropin (hCG) trigger before oocyte retrieval (OR). Vaginal micronized progesterone was commenced on the evening after OR, at a daily dose of 600 mg. Additional luteal phase support (LPS) was administered as follows: Group A: no additional LPS; Group B: 1500 IU of hCG administered 4 h after OR and Group C: 5000 IU of hCG administered 4 h after OR + an additional injection of 5000 IU of hCG 1 day before endometrial biopsy. Endometrial biopsy for histology and immunohistochemistry (IHC) was performed on day 5 or 6 after OR. Instead of being downregulated, both PR-B and ERα in endometrial glands and stroma were moderately to strongly expressed in all three protocols, suggesting that the mid-luteal histological signature of endometrial receptivity is deficient in a non-hCG-triggered IVM cycle. Poor clinical outcomes after fresh embryo transfer following IVM are probably related to inappropriate endometrial development which may be linked to the short follicular phase of IVM cycles.  相似文献   

2.
3.
This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF) and dominant follicle (DF) during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291–318) were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle.  相似文献   

4.
Calbindin-D9k (CaBP-9k) is a member of intracellular calcium binding proteins, which have a high affinity to calcium. CaBP-9k is mainly expressed in the mammalian intestine, uterus and placenta, and is regulated in tissue- and species-specific manners. Previous studies have shown that CaBP-9k expression is mainly controlled by steroid hormones and their receptors. Thus, we further investigated the expression and regulation of CaBP-9k during an estrus cycle in the pig uterus by Northern blot and immunoblot analysis in this study. In addition, serum levels of estrogen (E2) and progesterone (P4) were measured using ELISA. The CaBP-9k mRNA is highly expressed in the porcine uterus during a luteal phase compared to a follicular phase, and its mRNA level in a luteal phase is increased up to 10-fold compared to a follicular phase. In parallel to the level of CaBP-9k mRNA, the CaBP-9k protein is also dominantly expressed in the porcine uterus, and strongly expressed in the epithelium and glands of the porcine uterus during a luteal phase. Although, the localization of the CaBP-9k protein is scarcely detected at follicular phase, it is dominantly expressed in the porcine uterus during a luteal phase. In addition, the serum P4 level was significantly increased during a luteal phase compared to a follicular phase, whereas no difference was observed in E2 levels between follicular and luteal phases, indicating that the ratio of P4/E2 is remarkably increased in porcine uterus during a luteal phase compared to a follicular phase. In conclusion, these results suggest that P4 may play an important role in the up-regulation of CaBP-9k gene in the porcine uterus in a luteal phase, which is unlike the condition in the rat uterus. In addition, the porcine CaBP-9k may be dominantly expressed in the epithelium and glandular structure of pig uterus during a luteal phase. It may also be differentially regulated during this cycle presumably by steroid hormones, especially up-regulated P4 levels in this tissue.  相似文献   

5.
6.
The establishment of endometrial receptivity is a prerequisite for successful pregnancy, which is controlled by a complex mechanism. MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression. However, the contribution of miRNAs in endometrial receptivity is still unknown. Here we used rhesus monkey as an animal model and compared the endometrial miRNA expression profiles during early-secretory (pre-receptive) phase and mid-secretory (receptive) phase by deep sequencing. A set of differentially expressed miRNAs were identified, 8 of which were selected and validated using quantitative RT-PCR. To facilitate the prediction of their target genes, the 3'-UTRome was also determined using tag sequencing of mRNA 3'-termini. Surprisingly, about 50% of the 10,677 genes expressed in the rhesus monkey endometrium exhibited alternative 3'-UTRs. Of special interest, the progesterone receptor (PGR) gene, which is necessary for endometrial receptivity, processes an ultra long 3'-UTR (~10 kb) along with a short variant (~2.5 kb). Evolutionary analysis showed that the 3'-UTR sequences of PGR are poorly conserved between primates and rodents, suggesting a species-biased miRNA binding pattern. We further demonstrated that PGR is a valid target of miR-96 in rhesus monkey and human but not in rodents, whereas the regulation of PGR by miR-375 is rhesus monkey-specific. Additionally, we found that miR-219-5p regulates PGR expression through a primate-specific long non-coding RNA immediately downstream of the PGR locus. Our study provides new insights into the molecular mechanisms underlying endometrial receptivity and presents intriguing species-specific regulatory roles of miRNAs.  相似文献   

7.
8.
9.
10.
11.

Background  

Claudin-4 (CLDN4) is one of several proteins that act as molecular mediators of embryo implantation. Recently, we examined immunolabeling of leukemia inhibitory factor (LIF) in the endometrial tissue of 52 IVF patients, and found that LIF staining intensity was strongly correlated with successful pregnancy initiation. In the same set of patients, we have now examined endometrial CLDN4 expression, to see how expression intensity may vary with LIF. We examined CLDN4 in the luteal phase of the menstrual cycle, immediately preceding IVF treatment. Our aim was to compare expression of LIF and CLDN4 in the luteal phase, and document these patterns as putative biomarkers for pregnancy.  相似文献   

12.
13.
Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.  相似文献   

14.
In vitro studies have shown that keratinocyte growth factor (KGF, also known as FGF-7) is secreted by fibroblasts and is mitogenic specifically for epithelial cells. Therefore, KGF may be an important paracrine mediator of epithelial cell proliferation in vivo. Because stromal cells are thought to influence glandular proliferation in the primate endometrium, we investigated the hormonal regulation and cellular localization of KGF mRNA expression in the rhesus monkey uterus. Tissues were obtained both from naturally cycling monkeys in the follicular and luteal phases of the cycle, and from spayed monkeys that were either untreated or treated with estradiol (E2) alone, E2 followed by progesterone (P), E2 plus P, or E2 plus P plus an antiprogestin (RU 486). Northern blot analysis of total RNA with 32P- labeled probes revealed that the level of KGF mRNA in the endometrium was 70-100-fold greater in the luteal phase or after P treatment than in untreated, E2-treated, or follicular phase animals. Northern analysis also showed that KGF mRNA was present in the myometrium but was unaffected by hormonal state. RU 486 treatment prevented the P- induced elevation of endometrial KGF mRNA. P-dependent elevation of endometrial KGF expression was confirmed by measurement of KGF protein in tissue extracts using a two-site enzyme-linked immunosorbent assay. In situ hybridization with nonradioactive digoxigenin-labeled cDNA probes revealed that the KGF mRNA signal, which was present only in stromal and smooth muscle cells, was substantially increased by P primarily in the stromal cells located in the basalis region. Smooth muscle cells in the myometrium and the walls of the spiral arteries also expressed KGF mRNA, but the degree of this expression did not differ with hormonal state. P treatment led to increased proliferation in the glandular epithelium of the basalis region and to extensive growth of the spiral arteries. We conclude that the P-dependent increase in endometrial KGF resulted from a dual action of P: (a) a P- dependent induction of KGF expression in stromal cells, especially those in the basalis (zones III and IV), and (b) a P-dependent increase in the number of KGF-positive vascular smooth muscle cells caused by the proliferation of the spiral arteries. KGF is one of the first examples in primates of a P-induced, stromally derived growth factor that might function as a progestomedin.  相似文献   

15.
16.
17.
18.
miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal‐to‐zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc‐miR‐205 and bovine bta‐miR‐10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc‐miR‐205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte‐to‐embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.  相似文献   

19.
MicroRNAs (miRNAs) are 21-24-nucleotide non-coding RNAs found in diverse organisms. Although hundreds of miRNAs have been cloned or predicted, only very few miRNAs have been functionally characterized. Embryo implantation is a crucial step in mammalian reproduction. Many genes have been shown to be significantly changed in mouse uterus during embryo implantation. However, miRNA expression profiles in the mouse uterus between implantation sites and inter-implantation sites are still unknown. In this study, miRNA microarray was used to examine differential expression of miRNAs in the mouse uterus between implantation sites and inter-implantation sites. Compared with inter-implantation sites, there were 8 up-regulated miR-NAs at implantation sites, which were confirmed by both Northern blot and in situ hybridization. miR-21 was highly expressed in the subluminal stromal cells at implantation sites on day 5 of pregnancy. Because miR-21 was not detected in mouse uterus during pseudopregnancy and under delayed implantation, miR-21 expression at implantation sites was regulated by active blastocysts. Furthermore, we showed that Reck was the target gene of miR-21. Our data suggest that miR-21 may play a key role during embryo implantation.  相似文献   

20.
MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules that down-regulate the expression of target genes in a sequence-dependent manner. Recent studies indicated that miRNAs are mechanistically involved in the regulation of the mammalian corpus luteum (CL). However, few studies have profiled the different miRNA expression patterns in bovine non-regressed and regressed CL. In this study, miRNA microarray was employed to investigate the different miRNA expression patterns in bovine CL. Among the 13 differentially expressed miRNAs, seven were preferentially expressed in non-regressed CL, while six miRNAs were more highly expressed in regressed CL. Real-time RT-PCR was used to validate the microarray results. Mir-378 miRNA, known to be associated with apoptosis, was 8.54-fold (P < 0.01) up-regulated in non-regressed CL, and the interferon gamma receptor 1 (IFNGR1) gene, which potentially plays a role in apoptosis of the luteal cell, was predicted to be the target of mir-378. The results of real-time RT-PCR of mir-378 and western blot analysis of the IFNGR1 protein at different stages of CL development showed that mir-378 decreased the expression of IFNGR1 protein but not IFNGR1 mRNA. Taken together, our data support a direct role for miRNA in apoptosis of bovine CL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号