首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Split-hand/foot malformation with long-bone deficiency (SHFLD) is a rare, severe limb deformity characterized by tibia aplasia with or without split-hand/split-foot deformity. Identification of genetic susceptibility loci for SHFLD has been unsuccessful because of its rare incidence, variable phenotypic expression and associated anomalies, and uncertain inheritance pattern. SHFLD is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has also been postulated. We conducted a genomewide linkage analysis, using a 10K SNP array in a large consanguineous family (UR078) from the United Arab Emirates (UAE) who had disease transmission consistent with an autosomal dominant inheritance pattern. The study identified two novel SHFLD susceptibility loci at 1q42.2-q43 (nonparametric linkage [NPL] 9.8, P=.000065) and 6q14.1 (NPL 7.12, P=.000897). These results were also supported by multipoint parametric linkage analysis. Maximum multipoint LOD scores of 3.20 and 3.78 were detected for genomic locations 1q42.2-43 and 6q14.1, respectively, with the use of an autosomal dominant mode of inheritance with reduced penetrance. Haplotype analysis with informative crossovers enabled mapping of the SHFLD loci to a region of approximately 18.38 cM (8.4 Mb) between single-nucleotide polymorphisms rs1124110 and rs535043 on 1q42.2-q43 and to a region of approximately 1.96 cM (4.1 Mb) between rs623155 and rs1547251 on 6q14.1. The study identified two novel loci for the SHFLD phenotype in this UAE family.  相似文献   

2.
Nonsyndromic cleft lip with or without cleft palate (CL-P) is a common congenital anomaly with incidence ranging from 1 in 300 to 1 in 2,500 live births. We analyzed two Indian pedigrees (UR017 and UR019) with isolated, nonsyndromic CL-P, in which the anomaly segregates as an autosomal dominant trait. The phenotype was variable, ranging from unilateral to bilateral CL-P. A genomewide linkage scan that used approximately 10,000 SNPs was performed. Nonparametric linkage (NPL) analysis identified 11 genomic regions (NPL>3.5; P<.005) that could potentially harbor CL-P susceptibility variations. Among those, the most significant evidence was for chromosome 13q33.1-34 at marker rs1830756 (NPL=5.57; P=.00024). This was also supported by parametric linkage; MOD score (LOD scores maximized over genetic model parameters) analysis favored an autosomal dominant model. The maximum LOD score was 4.45, and heterogeneity LOD was 4.45 (alpha =100%). Haplotype analysis with informative crossovers enabled the mapping of the CL-P locus to a region of approximately 20.17 cM (7.42 Mb) between SNPs rs951095 and rs726455. Thus, we have identified a novel genomic region on 13q33.1-34 that harbors a high-risk variant for CL-P in these Indian families.  相似文献   

3.
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD?=?4.51, α?=?0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD?=?3.60, α?=?0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD?=?3.07, α?=?0.29; dominant HLOD?=?3.03, α?=?0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD?=?3.02, α?=?0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.  相似文献   

4.
Retinitis pigmentosa (RP) is a genetically heterogeneous group of retinal degenerative disorders resulting in severe visual loss and blindness that have remained incurable till date. We report the mapping of the disease locus in a 3-generation family of Indian origin with autosomal dominant RP (ADRP). Diagnosis of RP and recruitment was made after a complete clinical evaluation of all members. Manifestations of the disease included night blindness with blurred central vision in some cases, loss of peripheral vision, and diffuse degeneration of the retinal pigment epithelium. Linkage analysis using microsatellite markers was carried out on 34 members (14 affected). After testing for linkage to known retinal dystrophy loci as well as a subsequent genome-wide analysis, we detected linkage to markers on chromosome 6q23: D6S262 at 130 cM, D6S457 (130 cM) and D6S1656 (131 cM) gave significant 2-point LOD scores of 3.0–3.8. Multipoint LOD scores of ≥3.0 were obtained for markers between 121 and 130 cM. Haplotype analysis with several markers in the same region on chromosome 6 shows a disease-cosegregating region of about 25 Mb between 109 and 135 Mb. There are no known RP genes in this interval, which contains >100 genes. This study provides evidence for a novel ADRP locus on chromosome 6q23.  相似文献   

5.
Lung cancer is a major cause of death in the United States and other countries. The risk of lung cancer is greatly increased by cigarette smoking and by certain occupational exposures, but familial factors also clearly play a major role. To identify susceptibility genes for familial lung cancer, we conducted a genomewide linkage analysis of 52 extended pedigrees ascertained through probands with lung cancer who had several first-degree relatives with the same disease. Multipoint linkage analysis, under a simple autosomal dominant model, of all 52 families with three or more individuals affected by lung, throat, or laryngeal cancer, yielded a maximum heterogeneity LOD score (HLOD) of 2.79 at 155 cM on chromosome 6q (marker D6S2436). A subset of 38 pedigrees with four or more affected individuals yielded a multipoint HLOD of 3.47 at 155 cM. Analysis of a further subset of 23 multigenerational pedigrees with five or more affected individuals yielded a multipoint HLOD score of 4.26 at the same position. The 14 families with only three affected relatives yielded negative LOD scores in this region. A predivided samples test for heterogeneity comparing the LOD scores from the 23 multigenerational families with those from the remaining families was significant (P=.007). The 1-HLOD multipoint support interval from the multigenerational families extends from C6S1848 at 146 cM to 164 cM near D6S1035, overlapping a genomic region that is deleted in sporadic lung cancers as well as numerous other cancer types. Parametric linkage and variance-components analysis that incorporated effects of age and personal smoking also supported linkage in this region, but with somewhat diminished support. These results localize a major susceptibility locus influencing lung cancer risk to 6q23-25.  相似文献   

6.
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder that is associated with episodic recurrent brachial plexus neuropathy. A mutation for HNA maps to chromosome 17q25. To refine the HNA locus further, we carried out genetic linkage studies in seven pedigrees with a high density set of DNA markers from chromosome 17q25. All pedigrees demonstrated linkage to chromosome 17q25, and an analysis of recombinant events placed the HNA locus within an interval of approximately 1 Mb flanked by markers D17S722 and D17S802. In order to test the power of linkage disequilibrium mapping, we compared genotypes of 12 markers from seven pedigrees that were from the United States and that showed linkage to chromosome 17q25. The haplotypes identified a founder effect in six of the seven pedigrees with a minimal shared haplotype that further refines the HNA locus to an interval of approximately 500 kb. These findings suggest that, for the pedigrees from the United States, there are at least two different mutations in the HNA gene.  相似文献   

7.
Dominant optic atrophy, a hereditary optic neuropathy causing decreased visual acuity, colour vision deficits, a centro-caecal scotoma and optic nerve pallor, has been mapped to a genetic interval of 1.4 cM between loci D3S3669 and D3S3562 on chromosome 3q28-qter. In order to further refine the critical disease interval, and to test the power of haplotype analysis and linkage disequilibrium mapping, we identified a total of 38 families with dominant optic atrophy, unrelated on the basis of genealogy, from a data base of genetic eye disease families originating from the British Isles. They were studied with 12 highly polymorphic microsatellite markers spanning a region of 12 cM around the dominant optic atrophy locus (OPA1). Allelic frequency analysis [chi-squared test, likeli-hood ratio test (LRT) and P values] and haplotype parsimony analysis showed evidence of a founder effect in 36 of the 38 pedigrees. Six markers (D3S3669, D3S1523, D3S3642, D3S2305, D3S3590 and D3S3562), spanning 1.4 cM across the disease-associated region, demonstrated significant linkage disequilibrium by LRT (P < 0.05). A peak LRT value of 10.86 (P < 0.0005, λ = 0.4) occurred at D3S3669. On linkage disequilibrium multipoint analysis the maximum lod score of 8.01 is achieved at D3S1523, and 95% confidence intervals suggest that OPA1 lies within ca. 400 kb of D3S1523. Received: 13 August 1997 / Accepted: 22 September 1997  相似文献   

8.
Stephan DA  Hoffman EP 《Genomics》1999,55(3):268-274
Rippling muscle disease (RMD) is an autosomal dominant disorder characterized by electrically silent, percussion-induced muscular contractions. We previously reported the localization of a gene for RMD to 1q41-q42 by genome-wide linkage analysis in a large family from Oregon. This RMD gene was initially found to be contained within a 12-cM interval with a maximum multipoint lod score of 3.56. A YAC/BAC contig was assembled by STS content mapping and database searches spanning the nonrecombinant interval containing the RMD gene (RMD1). The physical map, in conjunction with recent mapping information from various other sources, clarified the order of genetic markers in this region and necessitated redefinition of the RMD genetic interval by linkage analysis with the newly ordered markers. Polymorphisms that mapped to the YACs in this contig were genotyped in this family and used to provide statistical support for narrowing of the critical genetic interval to 3 cM, corresponding to a maximum possible physical distance of 4.0 Mb. In addition, recombination breakpoint mapping supported the evidence that RMD1 must reside within this interval between markers D1S446 and D1S2680. ESTs (82) were mapped to the YACs spanning the region known to contain the RMD1 gene, and of these, 9 become strong positional candidates. The physical and refined genetic maps of this RMD locus set the stage for isolation of the responsible gene and elucidation of a novel patho-mechanism of calcium homeostasis in skeletal muscle.  相似文献   

9.
The National Heart, Lung, and Blood Institute Family Heart Study (FHS) genome‐wide linkage scan identified a region of chromosome 7q31–34 with a lod score of 4.9 for BMI at D7S1804 (131.9 Mb). We report the results of linkage and association to BMI in this region for two independent FHS samples. The first sample includes 225 FHS pedigrees with evidence of linkage to 7q31–34, using 1,132 single‐nucleotide polymorphisms (SNPs) and 7 microsatellites. The second represents a case–control sample (318 cases; BMI >25 and 325 controls; BMI <25) derived from unrelated FHS participants who were not part of the genome scan. The latter set was genotyped for 606 SNPs, including 37 SNPs with prior evidence for association in the linked families. Although variance components linkage analysis using only SNPs generated a peak lod score that coincided with the original linkage scan at 131.9 Mb, a conditional linkage analysis showed evidence of a second quantitative trait locus (QTL) near 143 cM influencing BMI. Three SNPs (rs161339, rs12673281, and rs1993068) located near the three genes pleiotrophin (PTN), diacylglycerol (DAG) kinase iota (DGKι), and cholinergic receptor, muscarinic 2 (CHRM2) demonstrated significant association in both linked families (P = 0.0005, 0.002, and 0.03, respectively) and the case–control sample (P = 0.01, 0.0003, and 0.03, respectively), regardless of the genetic model tested. These findings suggest that several genes may be associated with BMI in the 7q31–34 region.  相似文献   

10.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous recessive disease characterized primarily by atypical retinitis pigmentosa, obesity, polydactyly, hypogenitalism, and mental retardation. Despite the presence of at least five loci in the human genome, on chromosomes 2q, 3p, 11q, 15q and 16q, as many as 50% of the mutations appear to map to the BBS1 locus on 11q13. The recessive mode of inheritance and the genetic heterogeneity of the syndrome, as well as the inability to distinguish between different genetic loci by phenotypic analyses, have hindered efforts to delineate the 11q13 region as a first step toward cloning the mutated gene. To circumvent these difficulties, we collected a large number of BBS pedigrees of primarily North American and European origin and performed genetic analysis, using microsatellites from all known BBS genomic regions. Heterogeneity analysis established a 40.5% contribution of the 11q13 locus to BBS, and haplotype construction on 11q-linked pedigrees revealed several informative recombinants, defining the BBS1 critical interval between D11S4205 and D11S913, a genetic distance of 2.9 cM, equivalent to approximately 2.6 Mb. Loss of identity by descent in two consanguineous pedigrees was also observed in the region, potentially refining the region to 1.8 Mb between D11S1883 and D11S4944. The identification of multiple recombinants at the same position forms the basis for physical mapping efforts, coupled with mutation analysis of candidate genes, to identify the gene for BBS1.  相似文献   

11.
Hypospadias is a common malformation (1/300 boys) where the urethra opens on the ventral side of the penis. It is considered a complex disorder with both genetic and environmental factors involved in the pathogenesis. To identify the chromosomal loci involved in the pathogenesis of hypospadias, we performed a genome-wide linkage analysis in a three-generational family showing autosomal dominant inheritance of hypospadias. Fifteen individuals, whereof seven affected, were genotyped within a total of 426 microsatellite markers and the genotyping results were analyzed using parametric and non-parametric linkage analyses. The genome-wide linkage analysis and subsequent fine mapping gave a maximum linkage in both parametric (LOD score 2.71) and non-parametric (NPL score 5.01) single-point analyses for marker D7S640. A susceptibility haplotype shared by all affected boys was identified with the centromeric and telomeric boundaries defined by markers D7S2519 and D7S2442, respectively. This suggests a novel hypospadias locus at chromosome 7q32.2-q36.1 that encompasses 18.2 Mb (25 cM) and harbors hundreds of genes. Mutation analysis of two genes within the region, the AKR1D1 (aldo-keto reductase family 1, member D1) gene involved in the androgen pathway and the PTN gene coding for pleiotrophin, an embryonic differentiation and growth factor, was performed but without putative findings.  相似文献   

12.
Three large pedigrees of German descent with autosomal dominant "pure" familial spastic paraplegia (FSP) were characterized clinically and genetically. Haplotype and linkage analyses, with microsatellites covering the FSP region on chromosome 14q (locus FSP1), were performed. In pedigree W, we found a haplotype that cosegregates with the disease and observed three crossing-over events, reducing the FSP1 candidate region to 7 cM; in addition, the observation of apparent anticipation in this family suggests a trinucleotide repeat expansion as the mutation. In pedigrees D and S, the gene locus could be excluded from the whole FSP1 region, confirming the locus heterogeneity of autosomal dominant FSP.  相似文献   

13.
Autosomal dominant optic atrophy (OPA1) maps to Chromosome (Chr) 3q28, and the disease interval has been refined to within 1.4 cM, flanked by the markers D3S3669 and D3S3562. HRY, the human homolog of the Drosophila segmentation gene, hairy, maps by in situ hybridization to the chromosomal region 3q28-q29. We screened for mutations in HRY in 36 patients from 18 pedigrees with dominant optic atrophy and a group of normal control individuals. Heteroduplex mutation analysis and direct sequencing of all four coding exons and one upstream putative untranslated exon were performed. No disease-associated sequence alterations were identified. A polymorphism in the untranslated region of exon 2 was found, with four alleles. PCR amplification of this part of exon 2 in four of the pedigrees affected by autosomal dominant optic atrophy mapping to chromosome 3q, followed by haplotype analysis, showed recombination between HRY and OPA1 in one pedigree. This allows us to genetically position HRY in relation to known microsatellite markers in the region, placing HRY telomeric to marker D3S3562 and centromeric to D3S1305. This is outside the published critical disease interval for dominant optic atrophy. We have, therefore, excluded HRY as the gene for dominant optic atrophy by sequence analysis, mapped it genetically, and identified a polymorphism in our population. Received: 27 February 1998 / Accepted: 8 June 1998  相似文献   

14.
Autism is a heritable but genetically complex disorder characterized by deficits in language and in reciprocal social interactions, combined with repetitive and stereotypic behaviors. As with many genetically complex disorders, numerous genome scans reveal inconsistent results. A genome scan of 345 families from the Autism Genetic Resource Exchange (AGRE) (AGRE_1), gave the strongest evidence of linkage at 17q11-17q21 in families with no affected females. Here, we report a full-genome scan of an independent sample of 91 AGRE families with 109 affected sibling pairs (AGRE_2) that also shows the strongest evidence of linkage to 17q11-17q21 in families with no affected females. Taken together, these samples provide a replication of linkage to this chromosome region that is, to our knowledge, the first such replication in autism. Fine mapping at 2-centimorgan (cM) intervals in the combined sample of families with no affected females reveals a linkage peak at 66.85 cM, which places this locus at 17q21.  相似文献   

15.
Genetic studies in Turkish, Native American, European American, and African American (AA) families have linked chromosome 18q21.1–23 to susceptibility for diabetes-associated nephropathy. In this study, we have carried out fine linkage mapping in the 18q region previously linked to diabetic nephropathy in AAs by genotyping both microsatellite and single nucleotide polymorphisms (SNPs) for linkage analysis in an expanded set of 223 AA families multiplexed for type 2 diabetes associated ESRD (T2DM-ESRD). Several approaches were used to evaluate evidence of linkage with the strongest evidence for linkage in ordered subset analysis with an earlier age of T2DM diagnosis compared to the remaining pedigrees (LOD 3.9 at 90.1 cM, ∆P = 0.0161, NPL P value = 0.00002). Overall, the maximum LODs and LOD-1 intervals vary in magnitude and location depending upon analysis. The linkage mapping was followed up by performing a dense SNP map, genotyping 2,814 SNPs in the refined LOD-1 region in 1,029 AA T2DM-ESRD cases and 1,027 AA controls. Of the top 25 most associated SNPs, 10 resided within genic regions. Two candidate genes stood out: NEDD4L and SERPINB7. SNP rs512099, located in intron 1 of NEDD4L, was associated under a dominant model of inheritance [P value = 0.0006; Odds ratio (95% Confidence Interval) OR (95% CI) = 0.70 (0.57–0.86)]. SNP rs1720843, located in intron 2 of SERPINB7, was associated under a recessive model of inheritance [P value = 0.0017; OR (95% CI) = 0.65 (0.50–0.85)]. Collectively, these results suggest that multiple genes in this region may influence diabetic nephropathy susceptibility in AAs.  相似文献   

16.
Palauans are an isolated population in Micronesia with lifetime prevalence of schizophrenia (SCZD) of 2%, compared to the world rate of approximately 1%. The possible enrichment for SCZD genes, in conjunction with the potential for reduced etiological heterogeneity and the opportunity to ascertain statistically powerful extended pedigrees, makes Palauans a population of choice for the mapping of SCZD genes. We have used a Markov-chain Monte Carlo method to perform a genomewide multipoint analysis in seven extended pedigrees from Palau. Robust multipoint parametric and nonparametric linkage (NPL) analyses were performed under three nested diagnostic classifications-core, spectrum, and broad. We observed four regions of interest across the genome. Two of these regions-on chromosomes 2p13-14 (for which, under core diagnostic classification, NPL=6.5 and parametric LOD=4.8) and 13q12-22 (for which, under broad diagnostic classification, parametric LOD=3.6, and, under spectrum diagnostic classification, parametric LOD=3.5)-had evidence for linkage with genomewide significance, after correction for multiple testing; with the current pedigree resource and genotyping, these regions are estimated to be 4.3 cM and 19.75 cM in size, respectively. A third region, with intermediate evidence for linkage, was identified on chromosome 5q22-qter (for which, under broad diagnostic classification, parametric LOD=2.5). The fourth region of interest had only borderline suggestive evidence for linkage (on 3q24-28; for this region, under broad diagnostic classification, parametric LOD=2.0). All regions exhibited evidence for genetic heterogeneity. Our findings provide significant evidence for susceptibility loci on chromosomes 2p13-14 and 13q12-22 and support both a model of genetic heterogeneity and the utility of a broader set of diagnostic classifications in the population from Palau.  相似文献   

17.
Manic-depressive illness (MDI), also known as "bipolar affective disorder," is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, we ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping 5 cM from the disease gene, the pedigree sample has > 97% power to detect a dominant allele under genetic homogeneity and has > 73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores < -2.0 at recombination fraction (theta) = .0, 174 DNA loci produced lod scores < -2.0 at theta = .05, and 4 DNA marker loci yielded lod scores > 1 (chromosome 5--D5S39, D5S43, and D5S62; chromosome 11--D11S85). Of the markers giving lod scores > 1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, our linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk.  相似文献   

18.
Fuchs endothelial corneal dystrophy (FECD) is a common, late-onset disorder of the corneal endothelium. Although progress has been made in understanding the genetic basis of FECD by studying large families in which the phenotype is transmitted in an autosomal dominant fashion, a recently reported genome-wide association study identified common alleles at a locus on chromosome 18 near TCF4 which confer susceptibility to FECD. Here, we report the findings of our independent validation study for TCF4 using the largest FECD dataset to date (450 FECD cases and 340 normal controls). Logistic regression with sex as a covariate was performed for three genetic models: dominant (DOM), additive (ADD), and recessive (REC). We found significant association with rs613872, the target marker reported by Baratz et al.(2010), for all three genetic models (DOM: P = 9.33×10−35; ADD: P = 7.48×10−30; REC: P = 5.27×10−6). To strengthen the association study, we also conducted a genome-wide linkage scan on 64 multiplex families, composed primarily of affected sibling pairs (ASPs), using both parametric and non-parametric two-point and multipoint analyses. The most significant linkage region localizes to chromosome 18 from 69.94cM to 85.29cM, with a peak multipoint HLOD = 2.5 at rs1145315 (75.58cM) under the DOM model, mapping 1.5 Mb proximal to rs613872. In summary, our study presents evidence to support the role of the intronic TCF4 single nucleotide polymorphism rs613872 in late-onset FECD through both association and linkage studies.  相似文献   

19.
Coronary heart disease (CHD) accounts for half of the 1 million deaths annually ascribed to cardiovascular disease and for almost all of the 1.5 million acute myocardial infarctions. Within families affected by early and apparently heritable CHD, dyslipidemias have a much higher prevalence than in the general population; 20%-30% of early familial CHD has been ascribed to primary hypoalphalipoproteinemia (low HDL-C). This study assesses the evidence for linkage of low HDL-C to chromosomal region 11q23 in 105 large Utah pedigrees ascertained with closely related clusters of early CHD and expanded on the basis of dyslipidemia. Linkage analysis was performed by use of 22 STRP markers in a 55-cM region of chromosome 11. Two-point analysis based on a general, dominant-phenotype model yielded LODs of 2.9 for full pedigrees and 3.5 for 167 four-generation split pedigrees. To define a localization region, model optimization was performed using the heterogeneity, multipoint LOD score (mpHLOD). This linkage defines a region on 11q23.3 that is approximately 10 cM distal to-and apparently distinct from-the ApoAI/CIII/AIV gene cluster and thus represents a putative novel localization for the low HDL-C phenotype.  相似文献   

20.
Epidemiological and twin studies have consistently demonstrated a strong genetic component to prostate cancer (PCa) susceptibility. To date, numerous linkage studies have been performed to identify chromosomal regions containing PCa susceptibility genes. Unfortunately, results from these studies have failed to form any obvious consensus regarding which regions are most likely to contain genes that may contribute to PCa predisposition. One plausible explanation for the difficulty in mapping susceptibility loci is the existence of considerable heterogeneity in the phenotype of PCa, with significant variation in clinical stage and grade of disease even among family members. To address this issue, we performed a genome-wide linkage scan on 71 informative families with two or more men with aggressive PCa. When only men with aggressive PCa were coded as affected, statistically significant evidence for linkage at chromosome 15q12 was detected (LOD=3.49; genome-wide p=0.005). Furthermore, the evidence for linkage increased when analyses were restricted to Caucasian–American pedigrees (n=65; LOD=4.05) and pedigrees with two confirmed aggressive cases (n=42, LOD=4.76). Interestingly, a 1-LOD support interval about our peak at 15q12 overlaps a region of suggestive linkage, 15q11, identified by a recent linkage study on 1,233 PCa families by the International Consortium for Prostate Cancer Genetics. Using a more rigid definition of PCa in linkage studies will result in a severe reduction in sample sizes available for study, but may ultimately prove to increase statistical power to detect susceptibility genes for this multigenic trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号