首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Feed efficiency traits (FETs) are important economic indicators in poultry production. Because feed intake (FI) is a time-dependent variable, longitudinal models can provide insights into the genetic basis of FET variation over time. It is expected that the application of longitudinal models as part of genome-wide association (GWA) and genomic selection (i.e. genome-wide selection (GS)) studies will lead to an increase in accuracy of selection. Thus, the objectives of this study were to evaluate the accuracy of estimated breeding values (EBVs) based on pedigree as well as high-density single nucleotide polymorphism (SNP) genotypes, and to conduct a GWA study on longitudinal FI and residual feed intake (RFI) in a total of 312 chickens with phenotype and genotype in the F2 population. The GWA and GS studies reported in this paper were conducted using β-spline random regression models for FI and RFI traits in a chicken F2 population, with FI and BW recorded for each bird weekly between 2 and 10 weeks of age. A single SNP regression approach was used on spline coefficients for weekly FI and RFI traits, with results showing that two significant SNPs for FI occur in the synuclein (SNCAIP) gene. Results also show that these regions are significantly associated with the spline coefficients (q2) for 5- and 6-week-old birds, while GWA study results showed no SNP association with RFI in F2 chickens. Estimated breeding value predictions obtained using a pedigree-based best linear unbiased prediction (ABLUP) model were then compared with predictions based on genomic best linear unbiased prediction (GBLUP). The accuracy was measured as correlation between genomic EBV and EBV with the phenotypic value corrected for fixed effects divided by the square root of heritability. The regression of observed on predicted values was used to estimate bias of methods. Results show that prediction accuracies using GBLUP and ABLUP for the FI measured from 2nd to 10th week were between 0.06 and 0.46 and 0.03 and 0.37, respectively. These results demonstrate that genomic methods are able to increase the accuracy of predicted breeding values at later ages on the basis of both traits, and indicate that use of a longitudinal model can improve selection accuracy for the trajectory of traits in F2 chickens when compared with conventional methods.  相似文献   

3.
Fruit size and seedlessness are highly relevant traits in many fruit crop species, and both are primary targets of breeding programs for table grapes. In this work we performed a quantitative genetic analysis of size and seedlessness in an F1 segregating population derived from the cross between a classical seeded (Vitis vinifera L. 'Dominga') and a newly bred seedless ('Autumn Seedless') cultivar. Fruit size was scored as berry weight (BW), and for seedlessness we considered both seed fresh weight (SFW) and the number of seeds and seed traces (SN) per berry. Quantitative trait loci (QTL) analysis of BW detected 3 QTLs affecting this trait and accounting for up to 67% of the total phenotypic variance. QTL analysis for seedlessness detected 3 QTLs affecting SN (explaining up to 35% of total variance) and 6 affecting SFW (explaining up to 90% of total variance). Among them, a major effect QTL explained almost half of the phenotypic variation for SFW. Comparative analysis of QTLs for these traits reduced the number of grapevine genomic regions involved, one of them being a major effect QTL for seedlessness. Association analyses showed that microsatellite locus VMC7F2, closely linked to this QTL, is a useful marker for selection of seedlessnes.  相似文献   

4.
A. Ruiz  A. Barbadilla 《Genetics》1995,139(1):445-455
Using Cockerham's approach of orthogonal scales, we develop genetic models for the effect of an arbitrary number of multiallelic quantitative trait loci (QTLs) or neutral marker loci (NMLs) upon any number of quantitative traits. These models allow the unbiased estimation of the contributions of a set of marker loci to the additive and dominance variances and covariances among traits in a random mating population. The method has been applied to an analysis of allozyme and quantitative data from the European oyster. The contribution of a set of marker loci may either be real, when the markers are actually QTLs, or apparent, when they are NMLs that are in linkage disequilibrium with hidden QTLs. Our results show that the additive and dominance variances contributed by a set of NMLs are always minimum estimates of the corresponding variances contributed by the associated QTLs. In contrast, the apparent contribution of the NMLs to the additive and dominance covariances between two traits may be larger than, equal to or lower than the actual contributions of the QTLs. We also derive an expression for the expected variance explained by the correlation between a quantitative trait and multilocus heterozygosity. This correlation explains only a part of the genetic variance contributed by the markers, i.e., in general, a combination of additive and dominance variances and, thus, provides only very limited information relative to the method supplied here.  相似文献   

5.
6.
The interplay between dynamic models of biological systems and genomics is based on the assumption that genetic variation of the complex trait (i.e., outcome of model behavior) arises from component traits (i.e., model parameters) in lower hierarchical levels. In order to provide a proof of concept of this statement for a cattle growth model, we ask whether model parameters map genomic regions that harbor quantitative trait loci (QTLs) already described for the complex trait. We conducted a genome-wide association study (GWAS) with a Bayesian hierarchical LASSO method in two parameters of the Davis Growth Model, a system of three ordinary differential equations describing DNA accretion, protein synthesis and degradation, and fat synthesis. Phenotypic and genotypic data were available for 893 Nellore (Bos indicus) cattle. Computed values for parameter k1 (DNA accretion rate) ranged from 0.005 ± 0.003 and for α (constant for energy for maintenance requirement) 0.134 ± 0.024. The expected biological interpretation of the parameters is confirmed by QTLs mapped for k1 and α. QTLs within genomic regions mapped for k1 are expected to be correlated with the DNA pool: body size and weight. Single nucleotide polymorphisms (SNPs) which were significant for α mapped QTLs that had already been associated with residual feed intake, feed conversion ratio, average daily gain (ADG), body weight, and also dry matter intake. SNPs identified for k1 were able to additionally explain 2.2% of the phenotypic variability of the complex ADG, even when SNPs for k1 did not match the genomic regions associated with ADG. Although improvements are needed, our findings suggest that genomic analysis on component traits may help to uncover the genetic basis of more complex traits, particularly when lower biological hierarchies are mechanistically described by mathematical simulation models.  相似文献   

7.

Background

Multi-trait genomic models in a Bayesian context can be used to estimate genomic (co)variances, either for a complete genome or for genomic regions (e.g. per chromosome) for the purpose of multi-trait genomic selection or to gain further insight into the genomic architecture of related traits such as mammary disease traits in dairy cattle.

Methods

Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based genomic model with a common prior distribution for the marker allele substitution effects and estimation of the hyperparameters in this prior distribution from the progeny means data. From the Markov chain Monte Carlo samples of the allele substitution effects, genomic (co)variances were calculated on a whole-genome level, per chromosome, and in regions of 100 SNP on a chromosome.

Results

Genomic proportions of the total variance differed between traits. Genomic correlations were lower than pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits because of the part-whole relationship between these traits. The chromosome-wise genomic proportions of the total variance differed between traits, with some chromosomes explaining higher or lower values than expected in relation to chromosome size. Few chromosomes showed pleiotropic effects and only chromosome 19 had a clear effect on all traits, indicating the presence of QTL with a general effect on mastitis resistance. The region-wise patterns of genomic variances differed between traits. Peaks indicating QTL were identified but were not very distinctive because a common prior for the marker effects was used. There was a clear difference in the region-wise patterns of genomic correlation among combinations of traits, with distinctive peaks indicating the presence of pleiotropic QTL.

Conclusions

The results show that it is possible to estimate, genome-wide and region-wise genomic (co)variances of mastitis resistance traits in dairy cattle using multivariate genomic models.  相似文献   

8.
Feed efficiency (FE) is one of the most economically and environmentally relevant traits in the animal production sector. The objective of this study was to gain knowledge about the genetic control of FE in rabbits. To this end, GWASs were conducted for individual growth under two feeding regimes (full feeding and restricted) and FE traits collected from cage groups, using 114 604 autosome SNPs segregating in 438 rabbits. Two different models were implemented: (1) an animal model with a linear regression on each SNP allele for growth trait; and (2) a two-trait animal model, jointly fitting the performance trait and each SNP allele content, for FE traits. This last modeling strategy is a new tool applied to GWAS and allows information to be considered from non-genotyped individuals whose contribution is relevant in the group average traits. A total of 189 SNPs in 17 chromosomal regions were declared to be significantly associated with any of the five analyzed traits at a chromosome-wide level. In 12 of these regions, 20 candidate genes were proposed to explain the variation of the analyzed traits, including genes such as FTO, NDUFAF6 and CEBPA previously associated with growth and FE traits in monogastric species. Candidate genes associated with behavioral patterns were also identified. Overall, our results can be considered as the foundation for future functional research to unravel the actual causal mutations regulating growth and FE in rabbits.  相似文献   

9.
10.
Gene discovery, estimation of heritability captured by SNP arrays, inference on genetic architecture and prediction analyses of complex traits are usually performed using different statistical models and methods, leading to inefficiency and loss of power. Here we use a Bayesian mixture model that simultaneously allows variant discovery, estimation of genetic variance explained by all variants and prediction of unobserved phenotypes in new samples. We apply the method to simulated data of quantitative traits and Welcome Trust Case Control Consortium (WTCCC) data on disease and show that it provides accurate estimates of SNP-based heritability, produces unbiased estimators of risk in new samples, and that it can estimate genetic architecture by partitioning variation across hundreds to thousands of SNPs. We estimated that, depending on the trait, 2,633 to 9,411 SNPs explain all of the SNP-based heritability in the WTCCC diseases. The majority of those SNPs (>96%) had small effects, confirming a substantial polygenic component to common diseases. The proportion of the SNP-based variance explained by large effects (each SNP explaining 1% of the variance) varied markedly between diseases, ranging from almost zero for bipolar disorder to 72% for type 1 diabetes. Prediction analyses demonstrate that for diseases with major loci, such as type 1 diabetes and rheumatoid arthritis, Bayesian methods outperform profile scoring or mixed model approaches.  相似文献   

11.
We propose a general Bayesian approach to heteroskedastic error modeling for generalized linear mixed models (GLMM) in which linked functions of conditional means and residual variances are specified as separate linear combinations of fixed and random effects. We focus on the linear mixed model (LMM) analysis of birth weight (BW) and the cumulative probit mixed model (CPMM) analysis of calving ease (CE). The deviance information criterion (DIC) was demonstrated to be useful in correctly choosing between homoskedastic and heteroskedastic error GLMM for both traits when data was generated according to a mixed model specification for both location parameters and residual variances. Heteroskedastic error LMM and CPMM were fitted, respectively, to BW and CE data on 8847 Italian Piemontese first parity dams in which residual variances were modeled as functions of fixed calf sex and random herd effects. The posterior mean residual variance for male calves was over 40% greater than that for female calves for both traits. Also, the posterior means of the standard deviation of the herd-specific variance ratios (relative to a unitary baseline) were estimated to be 0.60 ± 0.09 for BW and 0.74 ± 0.14 for CE. For both traits, the heteroskedastic error LMM and CPMM were chosen over their homoskedastic error counterparts based on DIC values.  相似文献   

12.
In the mink industry, feed costs are the largest variable expense and breeding for feed efficient animals is warranted. Implementation of selection for feed efficiency must consider the relationships between feed efficiency and the current selection traits BW and litter size. Often, feed intake (FI) is recorded on a cage with a male and a female and there is sexual dimorphism that needs to be accounted for. Study aims were to (1) model group recorded FI accounting for sexual dimorphism, (2) derive genetic residual feed intake (RFI) as a measure of feed efficiency, (3) examine the relationship between feed efficiency and BW in males (BWM) and females (BWF) and litter size at day 21 after whelping (LS21) in Danish brown mink and (4) investigate direct and correlated response to selection on each trait of interest. Feed intake records from 9574 cages, BW records on 16 782 males and 16 875 females and LS21 records on 6446 yearling females were used for analysis. Genetic parameters for FI, BWM, BWF and LS21 were obtained using a multivariate animal model, yielding sex-specific additive genetic variances for FI and BW to account for sexual dimorphism. The analysis was performed in a Bayesian setting using Gibbs sampling, and genetic RFI was obtained from the conditional distribution of FI given BW using genetic regression coefficients. Responses to single trait selection were defined as the posterior distribution of genetic superiority of the top 10% of animals after conditioning on the genetic trends. The heritabilities ranged from 0.13 for RFI in females and LS21 to 0.59 for BWF. Genetic correlations between BW in both sexes and LS21 and FI in both sexes were unfavorable, and single trait selection on BW in either sex showed increased FI in both sexes and reduced litter size. Due to the definition of RFI and high genetic correlation between BWM and BWF, selection on RFI did not significantly alter BW. In addition, selection on RFI in either sex did not affect LS21. Genetic correlation between sexes for FI and BW was high but significantly lower than unity. The high correlations across sex allowed for selection on standardized averages of animals’ breeding values (BVs) for RFI, FI and BW, which yielded selection responses approximately equal to the responses obtained using the sex-specific BVs. The results illustrate the possibility of selecting against RFI in mink with no negative effects on BW and litter size.  相似文献   

13.
Japanese chestnut (Castanea crenata Sieb. et Zucc.) has a long juvenile phase, so breeders have to wait many years to evaluate nut traits. Molecular markers associated with genes of interest would accelerate selection in chestnut breeding programs. We evaluated five nut traits (nut harvest date, nut weight, pericarp splitting, insect infestation, and specific gravity) in 99 Japanese chestnut cultivars and selections. A wide range of phenotypic variation was observed for each of the traits, suggesting that the collection harbored sufficient genetic diversity for breeding. A Bayesian genome-wide association study was conducted using 162 simple sequence repeat markers and 741 single nucleotide polymorphism markers. To evaluate the potential of marker-assisted selection, we examined 12 molecular markers found to be associated with nut traits: 4 for nut harvest date, 4 for nut weight, 1 for pericarp splitting, and 3 for insect infestation. The percentages of phenotypic variance explained ranged from 4.8 to 37.1%. Although insect infestation showed only medium heritability (0.672), we obtained two quantitative trait loci (QTLs) with extremely high posterior probabilities (0.93 and 1.00). Out of the 12 molecular markers, 3 of the 4 markers for nut harvest time could be validated in a breeding population. Accuracies of genomic selection were extremely high for nut harvest date (0.841) and moderate for insect infestation (0.604), suggesting that genomic selection based on Bayesian regression would reduce the cost of phenotypic evaluation of these traits and possibly others.  相似文献   

14.
Feed efficiency (FE) is one of the most important traits in pig production. However, it is difficult and costly to measure it, limiting the collection of large amount of data for an accurate selection for better FE. Therefore, the identification of single-nucleotide polymorphisms (SNPs) associated with FE-related traits to be used in the genetic evaluation is of great interest of pig breeding programs for increasing the prediction accuracy and the genetic progress of these traits. The objective of this study was to identify SNPs significantly associated with FE-related traits: average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR). We also aimed to identify potential candidate genes for these traits. Phenotypic information recorded on a population of 2386 three-way crossbreed pigs that were genotyped for 51 468 SNPs was used. We identified three loci of quantitative trait (QTL) regions associated with ADG and three QTL regions associated with ADFI; however, no significant association was found for FCR. A false discovery rate (FDR) ≤ 0.005 was used as the threshold for declaring an association as significant. The QTL regions associated with ADG on Sus scrofa chromosome (SSC) 1 were located between 177.01 and 185.47 Mb, which overlaps with the QTL regions for ADFI on SSC1 (173.26 and 185.47 Mb). The other QTL region for ADG was located on SSC12 (2.87 and 3.22 Mb). The most significant SNPs in these QTL regions explained up to 3.26% of the phenotypic variance of these traits. The non-identification of genomic regions associated with FCR can be explained by the complexity of this trait, which is a ratio between ADG and ADFI. Finally, the genes CDH19, CDH7, RNF152, MC4R, PMAIP1, FEM1B and GAA were the candidate genes found in the 1 Mb window around the QTL regions identified in this study. Among them, the MC4R gene (SSC1) has a well-known function related to ADG and ADFI. In this study, we identified three QTL regions for ADG (SSC1 and SSC12) and three for ADFI (SSC1). These regions were previously described in purebred pig populations; however, to our knowledge, this is the first study to confirm the relevance of these QTL regions in a crossbred pig population. The potential use of the SNPs and genes identified in this study in prediction models that combine genomic selection and marker-assisted selection should be evaluated for increasing the prediction accuracy of these traits in this population.  相似文献   

15.
16.
Recent studies in population of European ancestry have shown that 30%∼50% of heritability for human complex traits such as height and body mass index, and common diseases such as schizophrenia and rheumatoid arthritis, can be captured by common SNPs and that genetic variation attributed to chromosomes are in proportion to their length. Using genome-wide estimation and partitioning approaches, we analysed 49 human quantitative traits, many of which are relevant to human diseases, in 7,170 unrelated Korean individuals genotyped on 326,262 SNPs. For 43 of the 49 traits, we estimated a nominally significant (P<0.05) proportion of variance explained by all SNPs on the Affymetrix 5.0 genotyping array (). On average across 47 of the 49 traits for which the estimate of is non-zero, common SNPs explain approximately one-third (range of 7.8% to 76.8%) of narrow sense heritability.The estimate of is highly correlated with the proportion of SNPs with association P<0.031 (r 2 = 0.92). Longer genomic segments tend to explain more phenotypic variation, with a correlation of 0.78 between the estimate of variance explained by individual chromosomes and their physical length, and 1% of the genome explains approximately 1% of the genetic variance. Despite the fact that there are a few SNPs with large effects for some traits, these results suggest that polygenicity is ubiquitous for most human complex traits and that a substantial proportion of the “missing heritability” is captured by common SNPs.  相似文献   

17.
The productivity of sorghum is mainly determined by agronomically important traits. The genetic bases of these traits have historically been dissected and analysed through quantitative trait locus (QTL) mapping based on linkage maps with low-throughput molecular markers, which is one of the factors that hinder precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, an ultra-high-density linkage map based on high-quality single nucleotide polymorphisms (SNPs) generated from low-coverage sequences (~0.07 genome sequence) in a sorghum recombinant inbred line (RIL) population was constructed through new sequencing technology. This map consisted of 3418 bin markers and spanned 1591.4 cM of genome size with an average distance of 0.5 cM between adjacent bins. QTL analysis was performed and a total of 57 major QTLs were detected for eight agronomically important traits under two contrasting photoperiods. The phenotypic variation explained by individual QTLs varied from 3.40% to 33.82%. The high accuracy and quality of this map was evidenced by the finding that genes underlying two cloned QTLs, Dw3 for plant height (chromosome 7) and Ma1 for flowering time (chromosome 6), were localized to the correct genomic regions. The close associations between two genomic regions on chromosomes 6 and 7 with multiple traits suggested the existence of pleiotropy or tight linkage. Several major QTLs for heading date, plant height, numbers of nodes, stem diameter, panicle neck length, and flag leaf width were detected consistently under both photoperiods, providing useful information for understanding the genetic mechanisms of the agronomically important traits responsible for the change of photoperiod.  相似文献   

18.
Grain yield of Sorghum bicolor (L.) Moench is significantly influenced by genetically controlled variation in the number of tillers, plant height, time of anthesis, and various other morphological and physiological characters. In this study, a minimum of 27 unique QTLs that control variation in nine morphological traits, including the presence versus the absence and the height of basal tillers, were mapped, and the percentage of additive genetic variance explained by the QTLs was determined in a population of 137 recombinant inbred lines in two environments. Four QTLs explained from 86.3% to 48.9% (depending upon the environment) of the additive genetic variance in the number of basal tillers with heads, and seven QTLs explained from 85.9% to 47.9% of the additive genetic variance in panicle width. It is unlikely that different alleles were segregating in the mapping population at any of the major dwarfing loci, but five QTLs that explained from 65.8% to 52.0% of the additive genetic variance in main-culm height were mapped. QTLs controlling variation in height of the tallest basal tiller, number of basal tillers per basal-tillered plant, panicle length, leaf angle, maturity, and awn length also were mapped. Three or more QTLs were mapped in linkage groups A, E, G, and I, while none were mapped in linkage groups B and D. Several of the QTLs mapped in this study are likely candidates for marker-assisted selection in breeding programs. Received: 20 September 2000 / Accepted: 26 October 2000  相似文献   

19.
The first quantitative trait locus (QTL) analysis of multiple agronomic traits in the model legume Lotus japonicus was performed with a population of recombinant inbred lines derived from Miyakojima MG-20 x Gifu B-129. Thirteen agronomic traits were evaluated in 2004 and 2005: traits of vegetative parts (plant height, stem thickness, leaf length, leaf width, plant regrowth, plant shape, and stem color), flowering traits (flowering time and degree), and pod and seed traits (pod length, pod width, seeds per pod, and seed mass). A total of 40 QTLs were detected that explained 5%-69% of total variation. The QTL that explained the most variation was that for stem color, which was detected in the same region of chromosome 2 in both years. Some QTLs were colocated, especially those for pod and seed traits. Seed mass QTLs were located at 5 locations that mapped to the corresponding genomic positions of equivalent QTLs in soybean, pea, chickpea, and mung bean. This study provides fundamental information for breeding of agronomically important legume crops.  相似文献   

20.
There is a growing interest to improve feed efficiency (FE) traits in cattle. The genomic selection was proposed to improve these traits since they are difficult and expensive to measure. Up to date, there are scarce studies about the implementation of genomic selection for FE traits in indicine cattle under different scenarios of pseudo-phenotypes, models, and validation strategies on a commercial large scale. Thus, the aim was to evaluate the feasibility of genomic selection implementation for FE traits in Nelore cattle applying different models and pseudo-phenotypes under validation strategies. Phenotypic and genotypic information from 4 329 and 3 467 animals were used, respectively, which were tested for residual feed intake, DM intake, feed efficiency, feed conversion ratio, residual BW gain, and residual intake and BW gain. Six prediction methods were used: single-step genomic best linear unbiased prediction, Bayes A, Bayes B, Bayes Cπ, Bayesian least absolute shrinkage and selection operator (BLASSO), and Bayes R. Phenotypes adjusted for fixed effects (Y*), estimated breeding value (EBV), and EBV deregressed (DEBV) were used as pseudo-phenotypes. The validation approaches used were: (1) random: the data was randomly divided into ten subsets and the validation was done in each subset at a time; (2) age: the partition into training and testing sets was based on year of birth and testing animals were born after 2016; and (3) EBV accuracy: the data was split into two groups, being animals with accuracy above 0.45 the training set; and below 0.45 the validation set. In the analyses that used the Y* as pseudo-phenotype, prediction ability (PA) was obtained by dividing the correlation between pseudo-phenotype and genomic EBV (GEBV) by the square root of the heritability of the trait. When EBV and DEBV were used as the pseudo-phenotype, the simple correlation of this quantity with the GEBV was considered as PA. The prediction methods show similar results for PA and bias. The random cross-validation presented higher PA (0.17) than EBV accuracy (0.14) and age (0.13). The PA was higher for Y* than for EBV and DEBV (30.0 and 34.3%, respectively). Random validation presented the highest PA, being indicated for use in populations composed mainly of young animals and traits with few generations of data recording. For high heritability traits, the validation can be done by age, enabling the prediction of the next-generation genetic merit. These results would support breeders to identify genomic approaches that are more viable for genomic prediction for FE-related traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号