首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt.  相似文献   

2.
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.  相似文献   

3.
The insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor of central importance in cell proliferation. A fragment (residues 1-462) comprising the L1-cysteine rich-L2 domains of the human IGF-1R ectodomain has been overexpressed in glycosylation-deficient Lec8 cells and has been affinity-purified via a c-myc tag followed by gel filtration. The fragment was recognized by two anti-IGF-1R monoclonal antibodies, 24-31 and 24-60, but showed no detectable binding of IGF-1 or IGF-2. Isocratic elution of IGF-1R/462 on anion-exchange chromatography reduced sample heterogeneity, permitting the production of crystals that diffracted to 2.6 A resolution with cell dimensions a = 77.0 A, b = 99.5 A, c = 120.1 A, and space group P2(1)2(1)2(1).  相似文献   

4.
The IGF-1R [type 1 IGF (insulin-like growth factor) receptor] is activated upon binding to IGF-I and IGF-II leading to cell growth, survival and migration of both normal and cancerous cells. We have characterized the binding interaction between the IGF-1R and its ligands using two high-affinity mouse anti-IGF-1R mAbs (monoclonal antibodies), 7C2 and 9E11. These mAbs both block IGF-I binding to the IGF-1R but have no effect on IGF-II binding. Epitope mapping using chimaeras of the IGF-1R and insulin receptor revealed that the mAbs bind to the CR (cysteine-rich) domain of IGF-1R. The epitope was finely mapped using single point mutations in the IGF-1R. Mutation of Phe241, Phe251 or Phe266 completely abolished 7C2 and 9E11 binding. The three-dimensional structure showed that these residues cluster on the surface of the CR-domain. BIAcore analyses revealed that IGF-I and a chimaeric IGF-II with the IGF-I C-domain competed for the binding of both mAbs with the IGF-1R, whereas neither IGF-II nor a chimaeric IGF-I with the IGF-II C-domain affected antibody binding. We therefore conclude the IGF-I C-domain interacts with the CR (cysteine-rich) domain of the receptor at the cluster of residues Phe241, Phe251 and Phe266. These results allow precise orientation of IGF-I within the IGF-I-IGF-1R complex involving the IGF-I C-domain binding to the IGF-1R CR domain. In addition, mAbs 7C2 and 9E11 inhibited both IGF-I- and IGF-II-induced cancer cell proliferation, migration and IGF-1R down-regulation, demonstrating that targeting the IGF-1R is an effective strategy for inhibition of cancer cell growth.  相似文献   

5.
《MABS-AUSTIN》2013,5(3):273-288
The epidermal growth factor receptor (EGFR) and the type I insulin-like growth factor receptor (IGF-1R) are two cell surface receptor tyrosine kinases known to cooperate to promote tumor progression and drug resistance. Combined blockade of EGFR and IGF-1R has shown improved anti-tumor activity in preclinical models. Here, we report the characterization of a stable IgG-like bispecific antibody (BsAb) dual-targeting EGFR and IGF-1R that was developed for cancer therapy. The BsAb molecule (EI-04), constructed with a stability-engineered single chain variable fragment (scFv) against IGF-1R attached to the carboxyl-terminus of an IgG against EGFR, displays favorable biophysical properties for biopharmaceutical development. Biochemically, EI-04 bound to human EGFR and IGF-1R with sub nanomolar affinity, co-engaged the two receptors simultaneously, and blocked the binding of their respective ligands with similar potency compared to the parental monoclonal antibodies (mAbs). In tumor cells, EI-04 effectively inhibited EGFR and IGF-1R phosphorylation, and concurrently blocked downstream AKT and ERK activation, resulting in greater inhibition of tumor cell growth and cell cycle progression than the single mAbs. EI-04, likely due to its tetravalent bispecific format, exhibited high avidity binding to BxPC3 tumor cells co-expressing EGFR and IGF-1R, and consequently improved potency at inhibiting IGF-driven cell growth over the mAb combination. Importantly, EI-04 demonstrated enhanced in vivo anti-tumor efficacy over the parental mAbs in two xenograft models, and even over the mAb combination in the BxPC3 model. Our data support the clinical investigation of EI-04 as a superior cancer therapeutic in treating EGFR and IGF-1R pathway responsive tumors.  相似文献   

6.
Insulin-like growth factor-1 receptor (IGF-1R) comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD). When activated by IGF-1 or GD-derived IgG (GD-IgG), these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with (125)I IGF-1, (125)I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis.  相似文献   

7.
In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.  相似文献   

8.
Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-κB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-κB inhibitors.  相似文献   

9.
In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the “knob-into-hole” technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.  相似文献   

10.
11.
Low density lipoproteins (LDLs) play an important role in the pathogenesis of atherosclerosis. LDL has been shown to be mitogenic and proapoptotic for vascular smooth muscle cells. However, the mechanisms are poorly understood and may result from an alteration in intracellular mitogenic signaling either directly by LDL or indirectly through an autocrine effect involving growth factor secretion and/or growth factor receptor expression. Insulin-like growth factor-1 (IGF-1) is an autocrine/paracrine factor for vascular smooth muscle cells and has potent anti-apoptotic effects. Thus, we hypothesized that part of the proliferative responses to LDLs may be explained by its modulation of IGF-1 or IGF-1 receptor (IGF-1R) expression. Treatment of rat vascular smooth muscle cells with increasing doses of native LDL dose-dependently increased IGF-1 mRNA by up to 2.6-fold; however, native LDL had no effect on IGF-1R mRNA expression. In contrast, the same doses of oxidized LDL significantly reduced IGF-1 and IGF-1R mRNA by 80 and 61%, respectively, and reduced IGF-1 and IGF-1R protein expression by 63 and 46%. In addition, native and oxidized LDL significantly increased IGF-1-binding protein-2 and IGF-1-binding protein-4 expression as measured by Western ligand blot. Most interestingly, anti-IGF-1 antiserum completely inhibited LDL-induced but not serum-induced increase in (3)H-thymidine incorporation, indicating a requirement for IGF-1 in the LDL-stimulated mitogenic signaling pathway. In summary, these results suggest that native and oxidized LDLs have differential effects on IGF-1 and IGF-1R expression. Because IGF-1 is a potent survival factor for vascular smooth muscle cells, our findings suggest that moderately oxidized LDL may favor proliferation of smooth muscle cells, whereas oxidized LDL may contribute to plaque apoptosis by local depletion of IGF-1 and IGF-1R.  相似文献   

12.
Neurons that connect mechanosensory hair cell receptors to the central nervous system derive from the otic vesicle from where otic neuroblasts delaminate and form the cochleovestibular ganglion (CVG). Local signals interact to promote this process, which is autonomous and intrinsic to the otic vesicle. We have studied the expression and activity of insulin-like growth factor-1 (IGF-1) during the formation of the chick CVG, focusing attention on its role in neurogenesis. IGF-1 and its receptor (IGFR) were detected at the mRNA and protein levels in the otic epithelium and the CVG. The function of IGF-1 was explored in explants of otic vesicle by assessing the formation of the CVG in the presence of anti-IGF-1 antibodies or the receptor competitive antagonist JB1. Interference with IGF-1 activity inhibited CVG formation in growth factor-free media, revealing that endogenous IGF-1 activity is essential for ganglion generation. Analysis of cell proliferation cell death, and expression of the early neuronal antigens Tuj-1, Islet-1/2, and G4 indicated that IGF-1 was required for survival, proliferation, and differentiation of an actively expanding population of otic neuroblasts. IGF-1 blockade, however, did not affect NeuroD within the otic epithelium. Experiments carried out on isolated CVG showed that exogenous IGF-1 induced cell proliferation, neurite outgrowth, and G4 expression. These effects of IGF-1 were blocked by JB1. These findings suggest that IGF-1 is essential for neurogenesis by allowing the expansion of a transit-amplifying neuroblast population and its differentiation into postmitotic neurons. IGF-1 is one of the signals underlying autonomous development of the otic vesicle.  相似文献   

13.
The androgen-independent human prostate adenocarcinoma cell line DU-145 proliferates in serum-free medium and produces insulin-like growth factors (IGF)-I, IGF-II, and the IGF type-1 receptor (IGF-1R). They also secrete three IGF-binding proteins (IGFBP), IGFBP-2, -3, and -4. Of these, immunoblot analysis revealed selective proteolysis of IGFBP-3, yielding fragments of 31 and 19 kDa. By using an anti-IGF-I-specific monoclonal antibody (mAb), we detect surface receptor-bound IGF-I on serum-starved DU-145 cells, which activates IGF-1R and triggers a mitogenic signal. Incubation of DU-145 cells with blocking anti-IGF-I, anti-IGF-II, or anti-IGF-I plus anti-IGF-II mAb does not, however, inhibit serum-free growth of DU-145. Conversely, anti-IGF-1R mAb and IGFBP-3 inhibit DNA synthesis. IGFBP-3 also modifies the DU-145 cell cycle, decreases p34(cdc2) levels, and IGF-1R autophosphorylation. The antiproliferative IGFBP-3 activity is not IGF-independent, since des-(1-3)IGF-I, which does not bind to IGFBP-3, reverses its inhibitory effect. DU-145 also secretes the matrix metalloproteinase (MMP)-9, which can be detected in both a soluble and a membrane-bound form. Matrix metalloproteinase inhibitors, but not serpins, abrogate DNA synthesis in DU-145 associated with the blocking of IGFBP-3 proteolysis. Overexpression of an antisense cDNA for MMP-9 inhibits 80% of DU-145 cell proliferation that can be reversed by IGF-I in a dose-dependent manner. Inhibition of MMP-9 expression is also associated with a decrease in IGFBP-3 proteolysis and with reduced signaling through the IGF-1R. Our data indicate an IGF autocrine loop operating in DU-145 cells, specifically modulated by IGFBP-3, whose activity may in turn be regulated by IGFBP-3 proteases such as MMP-9.  相似文献   

14.
YC Wu  M Zhu  DM Robertson 《PloS one》2012,7(8):e42483

Background

Type I insulin-like growth factor receptor (IGF-1R) and insulin receptor (INSR) are highly homologous molecules, which can heterodimerize to form an IGF-1R/INSR hybrid (Hybrid-R). The presence and biological significance of the Hybrid-R in human corneal epithelium has not yet been established. In addition, while nuclear localization of IGF-1R was recently reported in cancer cells and human corneal epithelial cells, the function and profile of nuclear IGF-1R is unknown. In this study, we characterized the nuclear localization and function of the Hybrid-R and the role of IGF-1/IGF-1R and Hybrid-R signaling in the human corneal epithelium.

Methodology/Principle Findings

IGF-1-mediated signaling and cell growth were examined in a human telomerized corneal epithelial (hTCEpi) cell line using co-immunoprecipitation, immunoblotting and cell proliferation assays. The presence of Hybrid-R in hTCEpi and primary cultured human corneal epithelial cells was confirmed by immunofluorescence and reciprocal immunoprecipitation of whole cell lysates. We found that IGF-1 stimulated Akt and promoted cell growth through IGF-1R activation, which was independent of the Hybrid-R. The presence of Hybrid-R, but not IGF-1R/IGF-1R, was detected in nuclear extracts. Knockdown of INSR by small interfering RNA resulted in depletion of the INSR/INSR and preferential formation of Hybrid-R. Chromatin-immunoprecipitation sequencing assay with anti-IGF-1R or anti-INSR was subsequently performed to identify potential genomic targets responsible for critical homeostatic regulatory pathways.

Conclusion/Significance

In contrast to previous reports on nuclear localized IGF-1R, this is the first report identifying the nuclear localization of Hybrid-R in an epithelial cell line. The identification of a nuclear Hybrid-R and novel genomic targets suggests that IGF-1R traffics to the nucleus as an IGF-1R/INSR heterotetrameric complex to regulate corneal epithelial homeostatic pathways. The development of novel therapeutic strategies designed to target the IGF-1/IGF-1R pathway must take into account the modulatory roles IGF-1R/INSR play in the epithelial cell nucleus.  相似文献   

15.

Background

The IGF receptor type 1 (IGF-1R) pathway is frequently deregulated in human tumors and has become a target of interest for anti-cancer therapy.

Methodology/Principal Findings

We used a panel of 22 non-small cell lung cancer (NSCLC) cell lines to investigate predictive biomarkers of response to R1507, a fully-humanized anti-IGF-1R monoclonal antibody (Ab; Roche). 5 lines were moderately sensitive (25–50% growth inhibition) to R1507 alone. While levels of phospho-IGF-1R did not correlate with drug sensitivity, 4 out of 5 sensitive lines displayed high levels of total IGF-1R versus 1 out of 17 resistant lines (p = 0.003, Fisher''s Exact). Sensitive lines also harbored higher copy numbers of IGF-1R as assessed by independent SNP array analysis. Addition of erlotinib or paclitaxel to R1507 led to further growth inhibition in sensitive but not resistant lines. In one EGFR mutant lung adenocarcinoma cell line (11–18), R1507 and erlotinib co-treatment induced apoptosis, whereas treatment with either drug alone induced only cell cycle arrest. Apoptosis was mediated, in part, by the survival-related AKT pathway. Additionally, immunohistochemical (IHC) staining of total IGF-1R with an anti-total IGF-1R Ab (G11;Ventana) was performed on tissue microarrays (TMAs) containing 270 independent NSCLC tumor samples. Staining intensity was scored on a scale of 0 to 3+. 39.3% of tumors showed medium to high IGF-1R IHC staining (scores of 2+ or 3+, respectively), while 16.7% had scores of 3+.

Conclusions/Significance

In NSCLC cell lines, high levels of total IGF-1R are associated with moderate sensitivity to R1507. These results suggest a possible enrichment strategy for clinical trials with anti-IGF-1R therapy.  相似文献   

16.
Although several studies have shown that an induction of insulin-like growth factor (IGF) components occurs during hyperoxia-mediated lung injury, the role of these components in tissue repair is not well known. The present study aimed to elucidate the role of IGF system components in normal tissue remodeling. We used a rat model of lung injury and remodeling by exposing rats to > 95% oxygen for 48 h and allowing them to recover in room air for up to 7 days. The mRNA expression of IGF-I, IGF-II, and IGF-1 receptor (IGF-1R) increased during injury. However, the protein levels of these components remained elevated until day 3 of the recovery and were highly abundant in alveolar type II cells. Among IGF binding proteins (IGFBPs), IGFBP-5 mRNA expression increased during injury and at all the recovery time points. IGFBP-2 and -3 mRNA were also elevated during injury phase. In an in vitro model of cell differentiation, the expression of IGF-I and IGF-II increased during trans-differentiation of alveolar epithelial type II cells into type-I like cells. The addition of anti-IGF-1R and anti-IGF-I antibodies inhibited the cell proliferation and trans-differentiation to some extent, as evident by cell morphology and the expression of type I and type II cell markers. These findings demonstrate that the IGF signaling pathway plays a critical role in proliferation and differentiation of alveolar epithelium during tissue remodeling.  相似文献   

17.
The potential of antibodies raised against insulin-like growth factor-1 (IGF-1) as a treatment to enhance the anabolic actions of IGF-1 has been demonstrated in both rodent and ruminant models. We investigated whether treatment of genetically normal rats with anti-IGF-1 immunoglobulin (Ig, raised in cattle) would enhance growth and if anti-IGF-1 Ig treatment would ameliorate live-weight loss in genetically normal rats offered a severely protein-restricted diet. Scatchard analysis was used to characterise ammonium sulphate precipitated bovine anti-IGF-1 Ig. Anti-IGF-1 Ig binding to 125I-IGF-1 yielded an almost linear Scatchard plot, with a Hill co-efficient of 0.951 ± 0.012, indicating a single class of IGF-1 binding sites. The affinity of anti-IGF-1 Ig for IGF-1 was 2.14 ± 0.66 × 109 l/mol. The non-immune Ig preparation did not bind IGF-1. Rats were offered either a diet with a normal protein level (20%) or protein restricted (4% protein), and each dietary group was further treated with twice-daily i.p. injections of either diluent phosphate buffered saline, non-immune Ig or anti-IGF-1 Ig. Dietary protein level had a significant effect on live-weight gain, but there was no effect of non-immune Ig or anti-IGF-1 Ig on live-weight gain. Treatment with anti-IGF-1 Ig prevented the significant depression of cumulative dietary intake observed in diluent, and non-immune Ig treated groups offered the 4% protein diet. The cumulative dietary intake of the anti-IGF-1 Ig treated, 4% dietary protein group did not differ significantly from those of the groups offered the 20% protein diet. In addition, within the 4% dietary protein group, rats treated with non-immune Ig exhibited a cumulative feed intake that was intermediate between that of the diluent treated and anti-IGF-1 Ig treated groups (P < 0.05). Size exclusion chromatography was used to characterise in vitro 125I-IGF-1 binding in end-point plasma from each treatment group. In comparison to control groups, anti-IGF-1 Ig treatment resulted in substantially increased 125I-IGF-1 binding in the 30 to 40 kDa region and a concomitant reduction in elution of free 125I-IGF-1. Protein restriction markedly depressed IGF-1 binding at ~150 kDa in the plasma of diluent and non-immune Ig treated groups. Anti-IGF-1 Ig treatment was effective in preventing this decrease in ~150 kDa binding. Thus, anti-IGF-1 Ig appears to have a beneficial effect on dietary intake in protein-restricted rats, which is associated with induced changes in IGF-1 binding profiles in plasma.  相似文献   

18.
Fluorescent-antibody targeting of metastatic cancer has been demonstrated by our laboratory to enable tumor visualization and effective fluorescence-guided surgery. The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of metastatic colon cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24–31) was conjugated with 550 nm, 650 nm or PEGylated 650 nm fluorophores. Subcutaneous, orthotopic, and liver metastasis models of colon cancer in nude mice were targeted with the fluorescent IGF-1R antibodies. Western blotting confirmed the expression of IGF-1R in HT-29 and HCT 116 human colon cancer cell lines, both expressing green fluorescent protein (GFP). Labeling with fluorophore-conjugated IGF-1R antibody demonstrated fluorescent foci on the membrane of colon cancer cells. Subcutaneously- and orthotopically-transplanted HT-29-GFP and HCT 116-GFP tumors brightly fluoresced at the longer wavelengths after intravenous administration of fluorescent IGF-1R antibodies. Orthotopically-transplanted HCT 116-GFP tumors were brightly labeled by fluorescent IGF-1R antibodies such that they could be imaged non-invasively at the longer wavelengths. In an experimental liver metastasis model, IGF-1R antibodies conjugated with PEGylated 650 nm fluorophores selectively highlighted the liver metastases, which could then be non-invasively imaged. The IGF-1R fluorescent-antibody labeled liver metastases were very bright compared to the normal liver and the fluorescent-antibody label co-located with green fluorescent protein (GFP) expression of the colon cancer cells. The present study thus demonstrates that fluorophore-conjugated IGF-1R antibodies selectively visualize metastatic colon cancer and have clinical potential for improved diagnosis and fluorescence-guided surgery.  相似文献   

19.
Multispecific antibody-like molecules have the potential to advance the standard-of-care in many human diseases. The design of therapeutic molecules in this class, however, has proven to be difficult and, despite significant successes in preclinical research, only one trivalent antibody, catumaxomab, has demonstrated clinical utility. The challenge originates from the complexity of the design space where multiple parameters such as affinity, avidity, effector functions, and pharmaceutical properties need to be engineered in concurrent fashion to achieve the desired therapeutic efficacy. Here, we present a rapid prototyping approach that allows us to successfully optimize these parameters within one campaign cycle that includes modular design, yeast display of structure focused antibody libraries and high throughput biophysical profiling. We delineate this approach by presenting a design case study of MM-141, a tetravalent bispecific antibody targeting two compensatory signaling growth factor receptors: insulin-like growth factor 1 receptor (IGF-1R) and v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3). A MM-141 proof-of-concept (POC) parent molecule did not meet initial design criteria due to modest bioactivity and poor stability properties. Using a combination of yeast display, structured-guided antibody design and library-scale thermal challenge assay, we discovered a diverse set of stable and active anti-IGF-1R and anti-ErbB3 single-chain variable fragments (scFvs). These optimized modules were reformatted to create a diverse set of full-length tetravalent bispecific antibodies. These re-engineered molecules achieved complete blockade of growth factor induced pro-survival signaling, were stable in serum, and had adequate activity and pharmaceutical properties for clinical development. We believe this approach can be readily applied to the optimization of other classes of bispecific or even multispecific antibody-like molecules.  相似文献   

20.
We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号