首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
沈霞  吴文武  谭从娥  冯居君 《生物磁学》2011,(10):1821-1826
目的:CArG元件因其为血清反应因子识别的结合位点近年来备受关注。然而迄今为止尚未见到有关CArG元件的序列特征及进化模式的研究。方法:本研究应用生物信息学方法结合遗传学方法对小鼠及人基因组中CArG元件的位置分布序列类型、多样性及保守性进行深入研究。结果:多样性研究结果显示,CArG元件的序列在小鼠及人类基因组存在大量的不同类型。但是,小鼠和人基因组中CArG元件的主要类型又存在明显差异。同源性分析结果表明人类和小鼠中的CArG元件存在两种进化历程,一部分CArG元件拥有共同的祖先,一部分是在物种分化以后突变产生的。结论:上述研究结果将为更为深入阐述SRF的调控模式奠定理论基础,同时为更清楚的阐释CArG元件序列变化对下游基因的表达影响提供理论支持。  相似文献   

5.
6.
目的:CArG元件因其为血清反应因子识别的结合位点近年来备受关注。然而迄今为止尚未见到有关CArG元件的序列特征及进化模式的研究。方法:本研究应用生物信息学方法结合遗传学方法对小鼠及人基因组中CArG元件的位置分布序列类型、多样性及保守性进行深入研究。结果:多样性研究结果显示,CArG元件的序列在小鼠及人类基因组存在大量的不同类型。但是,小鼠和人基因组中CArG元件的主要类型又存在明显差异。同源性分析结果表明人类和小鼠中的CArG元件存在两种进化历程,一部分CArG元件拥有共同的祖先,一部分是在物种分化以后突变产生的。结论:上述研究结果将为更为深入阐述SRF的调控模式奠定理论基础,同时为更清楚的阐释CArG元件序列变化对下游基因的表达影响提供理论支持。  相似文献   

7.
8.
Enormity of the metazoan genomes and divergence in their regulation impose a serious constraint on the comprehensive understanding of context specific gene regulation. DNA elements located in the promoter, enhancer, and other regulatory regions of the genome dictate the temporal and spatial patterns of gene activities. However, owing to the diminutive and variable nature of the regulatory DNA elements, their identification and location remains a major challenge. We have developed an efficient strategy for isolating a repertoire of target sites for sequence specific DNA binding proteins from embryonic chick heart. A comprehensive library of such sequences was constructed and authenticated using various parameters including in silico determination of functional binding sites. This approach, therefore, for the first time, established an experimental and conceptual framework for defining the entire repertoire of functional DNA elements in any cellular context.  相似文献   

9.
10.
11.
12.
13.
Transposable element contributions to plant gene and genome evolution   总被引:34,自引:0,他引:34  
Transposable elements were first discovered in plants because they can have tremendous effects on genome structure and gene function. Although only a few or no elements may be active within a genome at any time in any individual, the genomic alterations they cause can have major outcomes for a species. All major element types appear to be present in all plant species, but their quantitative and qualitative contributions are enormously variable even between closely related lineages. In some large-genome plants, mobile DNAs make up the majority of the nuclear genome. They can rearrange genomes and alter individual gene structure and regulation through any of the activities they promote: transposition, insertion, excision, chromosome breakage, and ectopic recombination. Many genes may have been assembled or amplified through the action of transposable elements, and it is likely that most plant genes contain legacies of multiple transposable element insertions into promoters. Because chromosomal rearrangements can lead to speciating infertility in heterozygous progeny, transposable elements may be responsible for the rate at which such incompatibility is generated in separated populations. For these reasons, understanding plant gene and genome evolution is only possible if we comprehend the contributions of transposable elements.  相似文献   

14.
15.
16.
17.
The L1 Ta subfamily of long interspersed elements (LINEs) consists exclusively of human-specific L1 elements. Polymerase chain reaction-based screening in nonhuman primate genomes of the orthologous sites for 249 human L1 Ta elements resulted in the recovery of various types of sequence variants for approximately 12% of these loci. Sequence analysis was employed to capture the nature of the observed variation and to determine the levels of gene conversion and insertion site homoplasy associated with LINE elements. Half of the orthologous loci differed from the predicted sizes due to localized sequence variants that occurred as a result of common mutational processes in ancestral sequences, often including regions containing simple sequence repeats. Additional sequence variation included genomic deletions that occurred upon L1 insertion, as well as successive mobile element insertions that accumulated within a single locus over evolutionary time. Parallel independent mobile element insertions at orthologous loci in distinct species may introduce homoplasy into retroelement-based phylogenetic and population genetic data. We estimate the overall frequency of parallel independent insertion events at L1 insertion sites in seven different primate species to be very low (0.52%). In addition, no cases of insertion site homoplasy involved the integration of a second L1 element at any of the loci, but rather largely involved secondary insertions of Alu elements. No independent mobile element insertion events were found at orthologous loci in the human and chimpanzee genomes. Therefore, L1 insertion polymorphisms appear to be essentially homoplasy free characters well suited for the study of population genetics and phylogenetic relationships within closely related species.  相似文献   

18.
Mammalian genomes contain numerous evolutionary harbored mobile elements, a part of which are still active and may cause genomic instability. Their movement and positional diversity occasionally result in phenotypic changes and variation by causing altered expression or disruption of neighboring host genes. Here, we describe a novel microarray-based method by which dispersed genomic locations of a type of retrotransposon in a mammalian genome can be identified. Using this method, we mapped the DNA elements for a mouse retrotransposon, intracisternal A-particle (IAP), within genomes of C3H/He and C57BL/6J inbred mouse strains; consequently we detected hundreds of probable IAP cDNA–integrated genomic regions, in which a considerable number of strain-specific putative insertions were included. In addition, by comparing genomic DNAs from radiation-induced myeloid leukemia cells and its reference normal tissue, we detected three genomic regions around which an IAP element was integrated. These results demonstrate the first successful genome-wide mapping of a retrotransposon type in a mammalian genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号