首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background

The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed.

Results

A chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31.

Conclusions

In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as “synthetic metabolic engineering”. Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals or materials on demand.

  相似文献   

2.
Excellent thermal and operational stabilities of thermophilic enzymes can greatly increase the applicability of biocatalysis in various industrial fields. However, thermophilic enzymes are generally incompatible with thermo-labile substrates, products, and cofactors, since they show the maximal activities at high temperatures. Despite their pivotal roles in a wide range of enzymatic redox reactions, NAD(P)+ and NAD(P)H exhibit relatively low stabilities at high temperatures, tending to be a major obstacle in the long-term operation of biocatalytic chemical manufacturing with thermophilic enzymes. In this study, we constructed an in vitro artificial metabolic pathway for the salvage synthesis of NAD+ from its degradation products by the combination of eight thermophilic enzymes. The enzymes were heterologously produced in recombinant Escherichia coli and the heat-treated crude extracts of the recombinant cells were directly used as enzyme solutions. When incubated with experimentally optimized concentrations of the enzymes at 60 °C, the NAD+ concentration could be kept almost constant for 15 h.  相似文献   

3.
Changes in oxygen and/or glucose availability may result in altered levels of ATP production and amino acid levels, and alteration in lactic acid production. However, under certain metabolic insults, the retina demonstrates considerable resilience and maintains ATP production, and/or retinal function. We wanted to investigate whether this resilience would be reflected in alterations in the activity of key enzymes of retinal metabolism, or enzymes associated with amino acid production that may supply their carbon skeleton for energy production. Enzymatic assays were conducted to determine the activity of key retinal metabolic enzymes total ATPase and Na(+)/K(+)-ATPase, aspartate aminotransferase and lactate dehydrogenase. In vitro anoxia led to an increase in retinal lactate dehydrogenase activity and to a decrease in retinal aspartate aminotransferase activity, without significant changes in Na(+)/K(+)-ATPase activity. In vivo inhibition of glutamine synthetase resulted in a short-term significant decrease in retinal aspartate aminotransferase activity. An increase in retinal aspartate aminotransferase and lactate dehydrogenase activities was accompanied by altered levels of amino acids in neurons and glia after partial inhibition of glial metabolism, implying that short- and long-term up- and down-regulation of key metabolic enzymes occurs to supply carbon skeletons for retinal metabolism. ATPase activity does not appear to fluctuate under the metabolic stresses employed in our experimental procedures.  相似文献   

4.
Integrating biological information from different sources to understand cellular processes is an important problem in systems biology. We use data from mRNA expression arrays and chemical kinetics to formulate a metabolic model relevant to K562 erythroleukemia cells. MAP kinase pathway activation alters the expression of metabolic enzymes in K562 cells. Our array data show changes in expression of lactate dehydrogenase (LDH) isoforms after treatment with phorbol 12-myristate 13-acetate (PMA), which activates MAP kinase signaling. We model the change in lactate production which occurs when the MAP kinase pathway is activated, using a non-equilibrium, chemical-kinetic model of homolactic fermentation. In particular, we examine the role of LDH isoforms, which catalyse the conversion of pyruvate to lactate. Changes in the isoform ratio are not the primary determinant of the production of lactate. Rather, the total concentration of LDH controls the lactate concentration.  相似文献   

5.
In a previous article (Yallop and Svendsen 2001), recombinant CHO and BHK cell lines, expressing the human glucagon receptor and the gastric inhibitory peptide receptor, respectively, showed reduced growth rates and altered nutrient utilisation when grown with increasing concentrations of G418. This response was associated with an increased expression of the neo r protein, while expression of the recombinant membrane receptors remained unaltered. The metabolic response was characterised in both cell lines by an increase in the specific rate of glutamine utilisation and in CHO cells by a decrease in the yield of lactate from glucose, suggesting a change in the flux of glucose through central metabolism. The aim of this study was to further elucidate these metabolic changes by determining the activity and relative expression of key enzymes involved in glucose and glutamine metabolism. For both CHO and BHK cells, there was an increase in the activity of glutaminase, glutamate dehydrogenase and glutamine synthetase, suggesting an increased flux through the glutaminolysis pathway. The activity of glucose-6-phosphate dehydrogenase and pyruvate carboxylase in CHO cells was also increased whilst lactate dehydrogenase activity remained unaltered, suggesting an increased flux to the pentose phosphate pathway and TCA cycle, respectively. The activity of these enzymes in BHK cells was unchanged. Quantitative RT-PCR showed that expression levels of glutaminase and pyruvate carboxylase were the same with and without G418, indicating that the differences in activities were likely due to post-translational modifications. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The heat treatment of recombinant mesophiles having heterologous thermotolerant enzymes results in the one-step preparation of highly selective biocatalytic modules. The assembly of these modules enables us to readily construct an artificial metabolic pathway in vitro. In this work, we constructed a non-natural, cofactor-balanced, and oxygen-insensitive pathway for n-butanol production using 16 thermotolerant enzymes. The whole pathway was divided into 7 parts, in each of which NAD(H)-dependent enzymes were assigned to be the last step, and the fluxes through each part were spectrophotometrically determined. This real-time monitoring technique enabled the experimental optimization of enzyme level to achieve a desired production rate. Through the optimized pathway, n-butanol could be produced from glucose with a molar yield of 82% at a rate of 8.2 µmol l−1 min−1. Our approach would be widely applicable to the rational optimization of artificial metabolic pathways as well as to the in vitro production of value-added biomolecules.  相似文献   

7.
Broad-based adoption of biocatalytic methods will require widely available database tools, analogous to previous efforts compiling information for the facilitation of chemical synthesis. The analog to chemical reagents are enzymes. The analog to chemical synthetic routes are metabolic pathways. The free on-line database BRENDA exemplifies efforts to compile relevant information on enzymes for biocatalytic purposes. Likewise, the University of Minnesota Biocatalysis/Biodegradation Database focuses on novel enzymes and metabolic pathways useful in environmental and industrial biotechnology. The development of biocatalytic protocols will be facilitated by the increasing availability of well-curated database information on enzymatic enantioselectivity and capabilities for transforming disparate chemical functional groups.  相似文献   

8.
ATP and NADPH are two important cofactors for production of terpenoids compounds. Here we have constructed and optimized β-carotene synthetic pathway in Escherichia coli, followed by engineering central metabolic modules to increase ATP and NADPH supplies for improving β-carotene production. The whole β-carotene synthetic pathway was divided into five modules. Engineering MEP module resulted in 3.5-fold increase of β-carotene yield, while engineering β-carotene synthesis module resulted in another 3.4-fold increase. The best β-carotene yield increased 21%, 17% and 39% after modulating single gene of ATP synthesis, pentose phosphate and TCA modules, respectively. Combined engineering of TCA and PPP modules had a synergistic effect on improving β-carotene yield, leading to 64% increase of β-carotene yield over a high producing parental strain. Fed-batch fermentation of the best strain CAR005 was performed, which produced 2.1 g/L β-carotene with a yield of 60 mg/g DCW.  相似文献   

9.
Rhodococcus opacus B-4 cells are adhesive to and even dispersible in water-immiscible hydrocarbons owing to their highly lipophilic nature. In this study, we focused on the high operational stability of thermophilic enzymes and applied them to a biocatalytic conversion in an organic reaction medium using R. opacus B-4 as a lipophilic capsule of enzymes to deliver them into the organic medium. A novel thermo- and organic-solvent-tolerant ene reductase, which can catalyze the enantioselective reduction of ketoisophorone to (6R)-levodione, was isolated from Geobacillus sp. 30, and the gene encoding the enzyme was heterologously expressed in R. opacus B-4. Another thermophilic enzyme which catalyzes NAD+-dependent dehydrogenation of cyclohexanol was identified from the gene-expression library of Thermus thermophilus and the gene was coexpressed in R. opacus B-4 for cofactor regeneration. While the recombinant cells were not viable in the mixture due to high reaction temperature, 634 mM of (6R)-levodione could be produced with an enantiopurity of 89.2 % ee by directly mixing the wet cells of the recombinant R. opacus with a mixture of ketoisophorone and cyclohexanol at 50 °C. The conversion rate observed with the heat-killed recombinant cells was considerably higher than that obtained with a cell-free enzyme solution, demonstrating that the accessibility between the substrates and enzymes could be improved by employing R. opacus cells as a lipophilic enzyme capsule. These results imply that a combination of thermophilic enzymes and lipophilic cells can be a promising approach for the biocatalytic production of water-insoluble chemicals.  相似文献   

10.
In a previous study, an Escherichia coli strain lacking the key enzymes (acetate kinase and phosphotransacetylase, ACK-PTA) of the major acetate synthesis pathways reduced acetate accumulation. The ackA-pta mutant strain also exhibits an increased lactate synthesis rate. Metabolic flux analysis suggested that the majority of excessive carbon flux was redirected through the lactate formation pathway rather than the ethanol synthesis pathway. This result indicated that lactate dehydrogenase may be competitive at the pyruvate node. However, a 10-fold overexpression of the fermentative lactate dehydrogenase (ldhA) gene in the wild-type parent GJT001 was not able to divert carbon flux from acetate. The carbon flux through pyruvate and all its end products increases at the expense of flux through biosynthesis and succinate. Intracellular pyruvate measurements showed that strains overexpressing lactate dehydrogenase (LDH) depleted the pyruvate pool. This observation along with the observed excretion of pyruvate in the ackA-pta strain indicates the significance of intracellular pyruvate pools. In the current study, we focus on the role of the intracellular pyruvate pool in the redirection of metabolic fluxes at this important node. An increasing level of extracellular pyruvate leads to an increase in the intracellular pyruvate pool. This increase in intracellular pyruvate affects carbon flux distribution at the pyruvate node. Partitioning of the carbon flux to acetate at the expense of ethanol occurs at the acetyl-CoA node while partitioning at the pyruvate node favors lactate formation. The increased competitiveness of the lactate pathway may be due to the allosteric activation of LDH as a result of increased pyruvate levels. The interaction between the reactions catalyzed by the enzymes PFL (pyruvate formate lyase) and LDH was examined.  相似文献   

11.
合成生物学与代谢工程   总被引:5,自引:0,他引:5  
随着DNA重组技术的日趋成熟,代谢工程的理论和应用已经得到了迅速发展。合成生物学是近年来蓬勃发展的一门新兴学科,在许多领域都具有重要的应用。以下从改造细胞代谢的关键因子、代谢途径的调节和宿主细胞与代谢途径构建的关系等方面详细讨论了合成生物学的最新进展和合成生物学在代谢工程领域的应用。  相似文献   

12.
Baker P  Hillis C  Carere J  Seah SY 《Biochemistry》2012,51(9):1942-1952
Bacterial aldolase-dehydrogenase complexes catalyze the last steps in the meta cleavage pathway of aromatic hydrocarbon degradation. The aldolase (TTHB246) and dehydrogenase (TTHB247) from Thermus thermophilus were separately expressed and purified from recombinant Escherichia coli. The aldolase forms a dimer, while the dehydrogenase is a monomer; these enzymes can form a stable tetrameric complex in vitro, consisting of two aldolase and two dehydrogenase subunits. Upon complex formation, the K(m) value of 4-hydroxy-2-oxopentanoate, the substrate of TTHB246, is decreased 4-fold while the K(m) of acetaldehyde, the substrate of TTHB247, is increased 3-fold. The k(cat) values of each enzyme were reduced by ~2-fold when they were in a complex. The half-life of TTHB247 at 50 °C increased by ~4-fold when it was in a complex with TTHB246. The acetaldehyde product from TTHB246 could be efficiently channelled directly to TTHB247, but the channeling efficiency for the larger propionaldehyde was ~40% lower. A single A324G substitution in TTHB246 increased the channeling efficiency of propionaldehyde to a value comparable to that of acetaldehyde. Stable and catalytically competent chimeric complexes could be formed between the T. thermophilus enzymes and the orthologous aldolase (BphI) and dehydrogenase (BphJ) from the biphenyl degradation pathway of Burkholderia xenovorans LB400. However, channeling efficiencies for acetaldehyde in these chimeric complexes were ~10%. Structural and sequence analysis suggests that interacting residues in the interface of the aldolase-dehydrogenase complex are highly conserved among homologues, but coevolution of partner enzymes is required to fine-tune this interaction to allow for efficient substrate channeling.  相似文献   

13.
The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways – particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile ‘plug and play’ set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.  相似文献   

14.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

15.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

16.
Although enzymes of thermophilic organisms are often very resistant to thermal denaturation, they are usually less active than their mesophilic or psychrophilic homologues at moderate or low temperatures. To explore the structural features that would improve the activity of a thermophilic enzyme at less than optimal temperatures, we randomly mutated the DNA of single-site mutants of the thermostable Thermus thermophilus 3-isopropylmalate dehydrogenase that already had improved low-temperature activity and selected for additional improved low-temperature activity. A mutant (Ile279 → Val) with improved low-temperature activity contained a residue that directly interacts with the adenine of the coenzyme NAD(+), suggesting that modulation of the coenzyme-binding pocket's volume can enhance low-temperature activity. This idea was further supported by a saturation mutagenesis study of the two codons of two other residues that interact with the adenine. Furthermore, a similar type of amino acid substitution also improved the catalytic efficiency of another thermophilic dehydrogenase, T. thermophilus lactate dehydrogenase. Steady-state kinetic experiments showed that the mutations all favorably affected the catalytic turnover numbers. Thermal stability measurements demonstrated that the mutants remain very resistant to heat. Calculation of the energetic contributions to catalysis indicated that the increased turnover numbers are the result of destabilized enzyme-substrate-coenzyme complexes. Therefore, small changes in the side chain volumes of coenzyme-binding residues improved the catalytic efficiencies of two thermophilic dehydrogenases while preserving their high thermal stabilities and may be a way to improve low-temperature activities of dehydrogenases in general.  相似文献   

17.
The effect of pH (between 5.0 and 6.3) on butyric acid fermentation of xylose by Clostridium tyrobutyricum was studied. At pH 6.3, the fermentation gave a high butyrate production of 57.9 g l(-1) with a yield of 0.38-0.59 g g(-1) xylose and a reactor productivity up to 3.19 g l(-1)h(-1). However, at low pHs (<5.7), the fermentation produced more acetate and lactate as the main products, with only a small amount of butyric acid. The metabolic shift from butyrate formation to lactate and acetate formation in the fermentation was found to be associated with changes in the activities of several key enzymes. The activities of phosphotransbutyrylase (PTB), which is the key enzyme controlling butyrate formation, and NAD-independent lactate dehydrogenase (iLDH), which catalyzes the conversion of lactate to pyruvate, were higher in cells producing mainly butyrate at pH 6.3. In contrast, cells at pH 5.0 had higher activities of phosphotransacetylase (PTA), which is the key enzyme controlling acetate formation, and lactate dehydrogenase (LDH), which catalyzes the conversion of pyruvate to lactate. Also, PTA was very sensitive to the inhibition by butyric acid. Difference in the specific metabolic rate of xylose at different pHs suggests that the balance in NADH is a key in controlling the metabolic pathway used by the cells in the fermentation.  相似文献   

18.
A peculiar phenomenon, differing from the response of mammalian cells, occurred when Chinook salmon embryo (CHSE) cells were passaged in the medium lacking of both glucose and glutamine. To elucidate metabolic mechanism of CHSE cells, the metabolism parameters, key metabolic enzymes, and ATP levels were measured at different glucose and glutamine concentrations. In the glutamine-free culture, hexokinase activity kept constant, and lactate dehydrogenase (LDH) activity decreased. This indicated that lack of glutamine did not expedite glucose consumption but made it shift to lower lactate production and more efficient energy metabolism. The results coincided with the experimental results of unaltered specific glucose consumption rate and decreased yield coefficients of lactate to glucose. In the glucose-free culture, simultaneous increase of glutaminase activity and of specific ammonia production rate suggested an increased flux into the glutaminolysis pathway, and increases of both glutamate dehydrogenase activity and yield coefficient of ammonia to glutamine showed an increased flux into deamination pathway. However, when glucose and glutamine were both lacking, the specific consumption rates of most of amino acids increased markedly, together with decrease of LDH activity, indicating that pyruvate derived from amino acids, away from lactate production, remedied energy deficiency. When both glucose and glutamine were absent, intracellular ATP contents and the energy charge remained virtually unaltered.Revisions requested 16 December 2004; Revisions received 24 January 2005  相似文献   

19.
Nature exploits biosynthetic cascades to construct numerous molecules from a limited set of starting materials. A deeper understanding of biosynthesis and extraordinary developments in gene technology has allowed the manipulation of natural pathways and construction of artificial cascades for the preparation of a range of molecules, which would be challenging to access using traditional synthetic chemical approaches. Alongside these metabolic engineering strategies, there has been continued interest in developing in vivo and in vitro biocatalytic cascades. Advancements in both metabolic engineering and biocatalysis are complementary, and this article aims to highlight some of the most exciting developments in these two areas with a particular focus on exploring those that have the potential to advance both pathway engineering and more traditional biocatalytic cascade development.  相似文献   

20.
n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号