首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physicochemical and biological properties of the new branched cyclomaltooligosaccharides (cyclodextrins; CDs), 2-O-α-D-galactosyl-cyclomaltohexaose (2-O-α-D-galactosyl-α-cyclodextrin, 2-Gal-αCD) and 2-O-α-D-galactosyl-cyclomaltoheptaose (2-O-α-D-galactosyl-β-cyclodextrin, 2-Gal-βCD), were investigated. The formation of inclusion complexes of 2-Gal-CDs with various kinds of guest compounds (clofibrate, cholesterol, cholecalciferol, digitoxin, digitoxigenin, and prostaglandin A(1)) was examined by a solubility method, and the results were compared with those of non-branched CDs and other 6-O-glycosyl-CDs such as 6-O-α-D-galactosyl-CDs, 6-O-α-D-glucosyl-CDs, and 6-O-α-maltosyl-CDs. The inclusion abilities of 2-Gal-αCD for clofibrate and prostaglandin A(1), and 2-Gal-βCD for clofibrate, cholecalciferol, cholesterol, and digitoxigenin were markedly weaker than those of non-branched CD and other 6-O-glycosyl-CDs in each series, probably because of a steric hindrance caused by the α-(1→2)-galactoside linkage. The hemolytic activities of 2-Gal-CDs on human erythrocytes were the lowest among each CD series, and the compounds showed negligible cytotoxicity towards Caco-2 cells up to at least 100mM.  相似文献   

2.
The physicochemical and biological properties of the new branched cyclomaltooligosaccharides (cyclodextrins; CDs), 2-O-α-d-galactosyl-cyclomaltohexaose (2-O-α-d-galactosyl-α-cyclodextrin, 2-Gal-αCD) and 2-O-α-d-galactosyl-cyclomaltoheptaose (2-O-α-d-galactosyl-β-cyclodextrin, 2-Gal-βCD), were investigated. The formation of inclusion complexes of 2-Gal-CDs with various kinds of guest compounds (clofibrate, cholesterol, cholecalciferol, digitoxin, digitoxigenin, and prostaglandin A1) was examined by a solubility method, and the results were compared with those of non-branched CDs and other 6-O-glycosyl-CDs such as 6-O-α-d-galactosyl-CDs, 6-O-α-d-glucosyl-CDs, and 6-O-α-maltosyl-CDs. The inclusion abilities of 2-Gal-αCD for clofibrate and prostaglandin A1, and 2-Gal-βCD for clofibrate, cholecalciferol, cholesterol, and digitoxigenin were markedly weaker than those of non-branched CD and other 6-O-glycosyl-CDs in each series, probably because of a steric hindrance caused by the α-(1→2)-galactoside linkage. The hemolytic activities of 2-Gal-CDs on human erythrocytes were the lowest among each CD series, and the compounds showed negligible cytotoxicity towards Caco-2 cells up to at least 100 mM.  相似文献   

3.
The inclusion complexes of Luteolin (LU) with cyclodextrins (CDs) including β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) and dimethyl-β-cyclodextrin (DMβCD), Scheme 1, have been investigated using the method of steady-state fluorescence. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was obtained in the case of HPβCD followed by DMβCD and βCD. Moreover, 1H NMR and 2D NMR were carried out, revealing that LU has different form of inclusion which is in agreement with molecular modeling studies. These models confirm that when LU–βCD and LU–DMβCD complexes are formed, the B-ring is oriented toward the primary rim; however, for LU–HPβCD complex this ring is oriented toward the secondary rim. The ESR results showed that the antioxidant activity of luteolin was the order LU–HPβCD > LU–DMβCD > LU–βCD > LU, hence the LU-complexes behave are better antioxidants than luteolin free.  相似文献   

4.
Mass spectral measurements by electrospray ionization mass spectrometry (ESI-MS) detected the ions of β-cyclodextrin (βCD) or branched βCDs (glucosyl-, galactosyl-, mannosyl- and maltosyl-βCD)–prostaglandins (PGs: PGA2, PGD2, PGE1, PGE2, PGF and PGJ2) complexes, i.e., βCD–PG complexes, with a host:guest ratio of 1:1 in the negative ion mode. This is the first study to report the ions of branched βCD–PG complexes using ESI-MS. The inclusion complexes were determined by a flow injection analysis using acetonitrile/water. We could confirm by this method the presence of a βCD–PGE2 complex with a host:guest ratio of 1:1 in a solution-dissolved pharmaceutical formulation consisting of βCD–PGE2 (ProstarmonTM E tablet).  相似文献   

5.
SN-38, an active metabolite of irinotecan, is up to 1,000-fold more potent than irinotecan. But the clinical use of SN-38 is limited by its extreme hydrophobicity and instability at physiological pH. To enhance solubility and stability, SN-38 was complexed with different cyclodextrins (CDs), namely, sodium sulfobutylether β-cyclodextrin (SBEβCD), hydroxypropyl β-cyclodextrin, randomly methylated β-cyclodextrin, and methyl β-cyclodextrin, and their influence on SN-38 solubility, stability, and in vitro cytotoxicity was studied against ovarian cancer cell lines (A2780 and 2008). Phase solubility studies were conducted to understand the pattern of SN-38 solubilization. SN-38-βCD complexes were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), and Fourier transform infrared (FTIR). Stability of SN-38-SBEβCD complex in pH 7.4 phosphate-buffered saline was evaluated and compared against free SN-38. Phase solubility studies revealed that SN-38 solubility increased linearly as a function of CD concentration and the linearity was characteristic of an AP-type system. Aqueous solubility of SN-38 was enhanced by about 30–1,400 times by CD complexation. DSC, XRPD, and FTIR studies confirmed the formation of inclusion complexes, and stability studies revealed that cyclodextrin complexation significantly increased the hydrolytic stability of SN-38 at physiological pH 7.4. Cytotoxicity of SN-38-SBEβCD complex was significantly higher than SN-38 and irinotecan in both A2780 and 2008 cell lines. Results suggest that SBEβCD encapsulated SN-38 deep into the cavity forming stable inclusion complex and as a result increased the solubility, stability, and cytotoxicity of SN-38. It may be concluded that preparation of inclusion complexes with SBEβCD is a suitable approach to overcome the solubility and stability problems of SN-38 for future clinical applications.  相似文献   

6.
The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami's equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10(-2) h(-1) and 1.43×10(-2) h(-1) respectively.  相似文献   

7.
In this study, lansoprazole (LSP)/cyclodextrin (CD) inclusion complexes were prepared using a fluid bed coating technique, with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HPCD) as the host molecules, respectively, to simultaneously improve the dissolution and stability of LSP. The dissolution rate and stability of LSP was dramatically enhanced by inclusion complexation regardless of CD type. LSP/HPCD inclusion complex was more stable under illumination than LSP/β-CD inclusion complex. Differential scanning calorimetry and powder X-ray diffractometry proved the absence of crystallinity in both LSP/CD inclusion complexes. Fourier transform infrared spectroscopy together with molecular modeling indicated that the benzimidazole of LSP was included in the cavity of both CDs, while LSP was more deeply included in HPCD than β-CD. The enhanced photostability was due to the inclusion of the sulfinyl moiety into the HPCD cavity. CD inclusion complexation could improve the dissolution and stability of LSP.KEY WORDS: cyclodextrin, dissolution, inclusion complex, lansoprazole, molecular modeling, stability  相似文献   

8.
The molecular interactions of 5,6-dichloro-2-(trifluoromethyl)-1H-benzimidazole (G2), an antiprotozoa with poor aqueous solubility, with 2-hydroxypropyl-α-cyclodextrin (HPαCD), methyl-β-cyclodextrin (MβCD) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) were examined. The aqueous solubility enhancement by cyclodextrins (CDs) was evidenced in phase-solubility diagrams, and the stoichiometry of G2/CD systems was determined by Job's plots. Two-dimensional NMR spectroscopic data revealed that a different mode of interaction took place between G2 and CDs in solution. With HPαCD, a non-inclusion complex was generated. In the case of MβCD, a typical host-guest system was obtained and with HPβCD a partial inclusion complex through the narrow side of the macrocycle was formed. ESI-mass spectrometric data confirmed the stoichiometry and mode of interaction of these systems in solution. Solid-state characterization (scanning calorimetry and powder X-ray diffraction) supported the inclusion complex formation. The leishmanicidal activity, trypanocidal activity and non-toxic profile of G2/MβCD showed the advantages of using this inclusion complex to promote the biological assays extension of G2.  相似文献   

9.
In the present study, we investigated the feasibility of preparation of novel controlled release systems for the delivery of essential oil used as ambient odors. The inclusion interactions of cyclodextrins (CDs) and β-cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil were investigated by static headspace gas chromatography (SH-GC). The stability constants with monomeric CD derivatives were determined for standard compounds and for the compounds in essential oil. All studied CDs and CD polymers reduce the volatility of the aroma compounds and stable 1:1 inclusion complexes are formed. The retention capacity of the CD derivatives was measured in static experiments. The feasibility of preparation of novel controlled release systems for the delivery of fragrances was investigated by multiple headspace extraction (MHE) experiments.  相似文献   

10.
Liu HJ  Cai WD  Huang RN  Xia HL  Wen YZ 《Chirality》2012,24(2):181-187
Cyclodextrins (CDs) possess a variety of chiral centers and are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. Two types of CDs, α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD), were selected to evaluate the effects of the enantioselective ecotoxicity of racemic metolachlor (Rac-metolachlor) and its S-enantiomer (S-metolachlor) on the freshwater algae Scenedesmus obliquus (S. obliquus) by acute toxicity test. The results showed that the aquatic toxicity of S-metolachlor was higher than Rac-metolachlor and that CDs enhanced the toxicity of metolachlor enantioselectively by increasing the aquatic toxicity of Rac-metolachlor rather than that of S-metolachlor to S. obliquus. The equilibrium constant for Rac-metolachlor-CD complexes was higher than that of S-metolachlor-CDs, which was responsible for the greater aquatic toxicity shift effect of Rac-metolachlor. Thermodynamic studies of CD complexes showed that inclusion for all of the complexes was primarily a spontaneous, enthalpy-driven process. These results will help to understand the preliminary mechanism of shifting aquatic toxicity of metolachlor by CDs and the CDs mediated environmental processes of metolachlor, to correctly apply CDs to chiral pesticides formulation and environmental remediation of chiral contaminants.  相似文献   

11.
Enantioselective host-guest complexation between five racemic Ru(II) trisdiimine complexes and eight derivatized cyclodextrins (CDs) has been examined by NMR techniques. The appearance of non-equivalent complexation-induced shifts of between the Δ and Λ-enantionomers of the Ru(II) trisdiimine complexes and derivatized CDs is readily observed by NMR. In particular, sulfobutyl ether-β-cyclodextrin sodium salt (SBE-β-CD), R-naphtylethyl carbamate β-cyclodextrin (RN-β-CD), and S-naphtylethyl carbamate β-cyclodextrin (SN-β-CD) showed good enantiodiscrimination for all five Ru complexes examined, which indicates that aromatic and anionic derivatizing groups are beneficial for chiral recognition. The complexation stoichiometry between SBE-β-CD and [Ru(phen)3]2+ was found to be 1:1 and binding constants reveal that Λ-[Ru(phen)3]2+ binds more strongly to SBE-β-CD than the Δ-enantiomer. Correlations between this NMR method and separative techniques based on CDs as chiral discriminating agents (i.e., selectors) are discussed in detail.  相似文献   

12.
In an attempt to improve the physicochemical properties of cefixime (CEF), its supramolecular inclusion compounds were prepared with β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) in presence and/or absence of ternary component l-arginine (ARG) using spray drying technique. Initially, the phase solubility studies revealed a stoichiometry of 1:1 molar ratio with an AL-type of phase solubility curve. The stability constants of binary systems were remarkably improved in presence of ARG, indicating positive effect of its addition. The inclusion complexes were characterized by FTIR, XRPD, DSC, SEM, particle size analysis, and dissolution studies. Further, molecular mechanic (MM) calculations were performed to investigate the possible orientations of CEF inside βCD cavity in presence and/or absence of ternary component. In case of physicochemical studies, the ternary systems performed well as a result of comprehensive effect of ternary complexation and particle size reduction achieved by a spray drying technology.  相似文献   

13.
The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami’s equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10?2 h?1 and 1.43×10?2 h?1 respectively.  相似文献   

14.
In this study, we investigate how the effect of l-arginine (ARG) and cyclodextrins upon omeprazole (OME) stability and solubility. The effect of the presence of ARG on the apparent stability constants (K1:1) of the inclusion complexes formed between OME and each cyclodextrin, β-cyclodextrin (βCD), and methyl-β-cyclodextrin (MβCD) is studied by phase solubility diagrams and nuclear magnetic resonance (NMR) spectroscopy. The interaction of OME with those cyclodextrins, in the presence of ARG, is characterized using NMR spectroscopy and molecular dynamics simulations. ARG significantly increases the drug solubility and complex stability, in comparison to inclusion complexes formed in its absence. The effect is more pronounced for the OME:βCD complex. ARG also contributes to a larger stability of OME when free in aqueous solution. The combination of ARG with cyclodextrins can represent an important tool to develop stable drug formulations.  相似文献   

15.
The aim of this study was to increase the stability and water solubility of fragrance materials, to provide controlled release of these compounds, and to convert these substances from liquid to powder form by preparing their inclusion complexes with cyclodextrins (CDs). For this purpose, linalool and benzyl acetate were chosen as the fragrance materials. The use of beta-cyclodextrin (beta CD) and 2-hydroxypropyl-beta-cyclodextrin (2-HP beta CD) for increasing the solubility of these 2 fragrance materials was studied. Linalool and benzyl acetate gave a B-type diagram with beta CD, whereas they gave an A(L)-type diagram with 2-HP beta CD. Therefore, complexes of fragrance materials with 2-HP beta CD at 1:1 and 1:2 molar ratios (guest:host) were prepared. The formation of inclusion complexes was confirmed using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and circular dichroism spectroscopy. The results of the solubility studies showed that preparing the inclusion complex with 2-HP beta CD at a 1:1 molar ratio increased the solubility of linalool 5.9-fold and that of benzyl acetate 4.2-fold, whereas the complexes at a 1:2 molar ratio increased the solubility 6.4- and 4.5-fold for linalool and benzyl acetate, respectively. The stability and in vitro release studies were performed on the gel formulations prepared using uncomplexed fragrance materials or inclusion complexes of fragrance materials at a 1:1 molar ratio. It was observed that the volatility of both fragrance materials was decreased by preparing the inclusion complexes with 2-HP beta CD. Also, in vitro release data indicated that controlled release of fragrances could be possible if inclusion complexes were prepared.  相似文献   

16.

Plant in vitro culture is a platform for producing secondary metabolites that combines safety, quality and low environmental impact. Besides, it is possible to increase the accumulation of these compounds by different strategies, such as elicitation. In this work, we analyzed the effects of the combination of methyl jasmonate (MeJ) and two cyclodextrins (CDs) on the production of anthraquinones (AQs) in cell cultures of Rubiaceae (Morinda citrifolia and Rubia tinctorum). These secondary metabolites have been traditionally used as dyes and have interesting therapeutic applications. The experiments were designed according to a full factorial design of two factors (MeJ and a CD) in two levels (0 and 0.1 mM for MeJ, and 0 and 20 mM of the CD). MeJ and (2-hydroxypropyl)-β-cyclodextrin (HPCD) synergistically increased intracellular AQ content in suspension cultures of R. tinctorum, and, to a lesser extent, in suspension cultures of M. citrifolia. Combination of MeJ with another CD, 2-methyl-β-cyclodextrin, led to a more intense and later increase in AQ content in cell cultures of R. tinctorum when compared to MeJ–HPCD treatment. However, the combination of CD and MeJ failed to induce a drastic AQ release to the culture media. Nevertheless, our results show that combination of strategies (using a CD and MeJ) was successful to increase secondary metabolite accumulation in suspension cultures. To our knowledge, this is the first report of synergistic effect of MeJ and CD on AQ accumulation in plant in vitro cultures.

  相似文献   

17.
Triclosan (TCS), an antimicrobial agent widely used in consumer and medical products, was complexed with 2-hydroxypropyl-β-cyclodextrin (HPβCD) and methyl-β-cyclodextrin (MβCD). Phase-solubility studies indicated that inclusion complexes of 1:1 stoichiometry were formed and allowed estimation of the associated equilibrium constants and free-energy changes. At the highest cyclodextrin concentrations investigated, an almost 20-fold increase in the apparent water solubility of TCS was determined. Susceptibility tests against Escherichia coli and Staphylococcus aureus showed that the TCS–HPβCD and TCS–MβCD complexes exhibited antibacterial properties higher than those of uncomplexed TCS. The two complexes were also found capable of interfering with cell-to-cell communication mechanisms in the C. violaceum model system relying on N-acylhomoserine lactone autoinducers. The inhibitory activity of TCS increased significantly upon inclusion of the drug in HPβCD or MβCD, with small differences between the two CDs. The results obtained suggest that the investigated complexes could be used for treating infections caused by TCS-susceptible pathogens or for preventing biofilm formation on indwelling medical devices such as catheters, stents and orthopedic implants.  相似文献   

18.
Due to their size and high surface-to-volume ratio, nanogels can give some unique drug delivery opportunities. A novel technique to prepare cyclodextrin (CD) nanogels, in which the cross-linking takes place simultaneously with an emulsification/solvent evaporation process, has been implemented. The aqueous phase consisted of γ-cyclodextrin (γCD) or hydroxypropyl-β-cyclodextrin (HPβCD) at a fix concentration of 20% (w/w) with or without hydroxypropyl methylcellulose (HPMC) or agar at various concentrations. The incorporation of the cross-linking agent, ethyleneglycol diglycidyl ether (EGDE), was essential for the nanogel formation. By contrast, nanogels could be formed in the absence of surfactant such as Span 80, which can be attributed to the emulsion stabilizing effect of CDs by forming inclusion complexes with the organic solvent at the interface. Gas chromatography-mass spectrometry (GC-MS) analysis of the nanogels confirmed that dichloromethane levels were below the safety limit and, therefore, that these conditions of the organic solvent evaporation (60 °C for 180 min) led to nanogels that satisfy residual solvent requirements. Infrared analysis (IR), transmission electron microscopy (TEM) and dynamic light scattering (DLS) provided information about the cross-linking degree, the size and the size distribution of the nanogels. The ability of the nanogels to host a molecule that can form inclusion complexes and to sustain its release was tested using 3-methylbenzoic acid (3-MBA) as a probe with a high affinity for both β-cyclodextrin (βCD) and γCD. Permeability tests confirmed that 3-MBA was indeed taken up by the nanogels and then slowly released.  相似文献   

19.
This study evaluated three different methods for the formation of an inclusion complex between alpha- and beta-cyclodextrin (α- and β-CD) and limonene (LIM) with the goal of improving the physicochemical properties of limonene. The study samples were prepared through physical mixing (PM), paste complexation (PC), and slurry complexation (SC) methods in the molar ratio of 1:1 (cyclodextrin:limonene). The complexes prepared were evaluated with thermogravimetry/derivate thermogravimetry, infrared spectroscopy, X-ray diffraction, complexation efficiency through gas chromatography/mass spectrometry analyses, molecular modeling, and nuclear magnetic resonance. The results showed that the physical mixing procedure did not produce complexation, but the paste and slurry methods produced inclusion complexes, which demonstrated interactions outside of the cavity of the CDs. However, the paste obtained with β-cyclodextrin did not demonstrate complexation in the gas chromatographic technique because, after extraction, most of the limonene was either surface-adsorbed by β-cyclodextrin or volatilized during the procedure. We conclude that paste complexation and slurry complexation are effective and economic methods to improve the physicochemical character of limonene and could have important applications in pharmacological activities in terms of an increase in solubility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号