首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most studies of land change have focused on patterns, rates, and drivers of deforestation, but much less is known about the dynamics associated with agricultural abandonment and ecosystem recovery. Furthermore, most studies are conducted at a single spatial scale, and few have included variables related with internal socio-political conflicts. Here we evaluated the effect of environmental, demographic, and socio-economic variables on woody cover change in Colombia between 2001 and 2010 at the country, biome, and ecoregion scales. We also incorporated factors that reflect the unique history of Colombia such as the presence of illegal-armed groups and forced human displacement. Environmental variables explained the patterns of deforestation and forest regrowth at all scales because they can restrict or encourage different land uses across multiple spatial scales. Demographic variables were important at the biome and ecoregion scales and appear to be a consequence of the armed conflict, particularly through forced human displacement (for example, rural–urban migration), which in some areas has resulted in forest regrowth. In other areas, the impact of illegal armed groups has reduced forest cover, particularly in areas rich in gold and lands appropriate for cattle grazing. This multi-scale and multivariate approach provides a new insight into the complex relationship between woody cover change and land abandonment triggered mainly by armed conflict.  相似文献   

2.
Mexico’s 1992 agrarian counter-reforms opened up the country’s vast network of common property regimes, known as ejidos, to the possibility of privatization. This study investigates the relationship between dynamic common property regimes and deforestation in the wake of policy reform among eight ejidos in southeastern Mexico. Using institutional analyses, land use/land cover change (LULCC) analyses and a Forest Dependency Index, we examine how land tenure arrangements relate to land use and forest cover change patterns. We demonstrate that informally privatized ejidos had larger individual landholdings, more land in use, and higher rates of deforestation. Commonly-held ejidos exhibited lower deforestation rates and, in some cases, forests provided economic benefits via community forest management. However, forest dependency did not correlate with low deforestation rates, suggesting alternative pathways for conservation.  相似文献   

3.
基于黄河三角洲自然保护区1992年、2000年和2010年三期遥感图像,分析近20年黄河三角洲自然保护区土地利用/覆被变化(LUCC)情况。结果表明,在1992~2010年间,黄河三角洲自然保护区内同种土地覆被类型的空间分布较一致,均以海域、滩涂和旱地为主,但同种土地覆盖类型的比重均发生不同程度的变化。总体上,旱地、河渠、水库、居民地和其他用地类型的变化程度不明显,但年际间有波动变化;草地面积虽持续减少,但总体变化不明显;灌木面积总体变化也不明显,但年际间波动较大;芦苇面积呈减少趋势,尤其是1992~2000年间,大量芦苇覆被地转化为旱地类型;养殖塘面积增加明显,近20年间增加约6.24×103 hm2,主要由滩涂、柽柳、碱蓬等开发形成;海域面积变化剧烈,海域转化为滩涂是造成海域面积减少的主要原因。黄河三角洲自然保护区LUCC改变了自然保护区的生态系统结构,降低了自然保护区的生态服务功能。造成黄河三角洲LUCC的原因既有自然因素,也有人为因素,但在该区LUCC的驱动力主要为人类活动。  相似文献   

4.
5.
Despite the high proportion of secondary forests in the tropics, their conservation value remains poorly understood, particularly with regard to animals. Most theoretical studies of succession have focused on plants, linking life history trade‐offs to well‐known patterns of community change. However, the same trade‐offs proposed for plants should apply to animals, and indeed, animal studies show a change in community dominance from habitat generalist to forest specialist species during succession. Focusing on the diverse terrestrial small mammals of the endangered Atlantic Forest, we assessed which ecological drivers (habitat structure and food availability) affect community changes during succession. If the change in community dominance is driven by trade‐offs between productivity and efficiency, it should be mainly associated with a decrease in food availability. As expected, from younger to older forest, habitat generalists decreased in richness and total abundance, concurrent with a decrease in arthropod biomass. By contrast, the increase in richness and total abundance of forest specialists was not clearly supported by the data; however, this group was not affected by food availability. These results are congruent with a trade‐off between competitive ability and ability to use abundant resources, and indicate that the major community change during succession involves habitat generalists. Secondary forests may thus be valuable for conservation, at least where habitat loss and fragmentation are not high, and old growth forest is available.  相似文献   

6.
7.
This study examines how human land uses and biophysical factors serve as predictors of land cover change in and around Madidi National Park in Bolivia. The Greater Madidi Landscape ranges over an elevational gradient from < 200 m in the Amazon basin to 6000 m in the high Andes, contains more than ten major ecosystem types, and several protected areas and sustainable use zones. In this study, Landsat Thematic Mapper satellite images collected over the study area at the beginning of the 1990s and then the 2000s were classified according to broad land cover types. Below elevations of 3000 m, the landscape experienced equal rates of deforestation and secondary forest increases of approximately 0.63 percent annually, resulting in no significant net change. Below elevations of 1000 m, however, we found an annual net loss in forest cover of 0.11 percent. Across the landscape, land cover change was most likely to occur near areas previously deforested, near roads and population centers, and at low elevations. We found net deforestation rates to be inversely related to strength of natural resource protection laws in protected areas and other jurisdictions. Results suggest little net change for the landscape as a whole, but that local scale changes may be significant, particularly near roads. Management policies favorable for biodiversity conservation in this landscape should limit the building of new roads and immigration to biologically sensitive areas and continue to support protected areas, which are achieving a positive result for forest conservation.  相似文献   

8.
The impact of fire use and hazard in frontier settlement is a critical environmental concern that has been historically overshadowed by deforestation issues- and thus underexamined at local and regional scales by social scientists. Consequently, conceptual frameworks of LUCC change consider fire use as an outcome of land use decisions and neglect the capacity of burning choices to influence these decisions and subsequent land cover change. This paper examines the relationship of settlement, land use, and fire use. It considers recent LUCC frameworks, and then uses household surveys on fire use practices to discuss how the study of fire use can contribute to understanding frontier landscape change. Planting decisions, settlement history, location desires, and burning logistics work in combination to influence burning choices and thus LUCC.  相似文献   

9.
Forest transition — i.e., the shift from decreasing to expanding forest cover — in the northern mountains of Vietnam was analyzed at the local scale in four villages from the 1970s to 2007–2008 to understand feedbacks from local environmental degradation on land uses, the conditions under which such feedbacks occur, and their possible roles in the transition. Remote sensing data were combined with field surveys including interviews, group discussions, mental and participatory mapping, observations and secondary sources. The feedbacks from environmental degradation and changes in the provision of ecosystem services to land practices via environmental cognitions were analyzed. The case studies showed that forest scarcity was perceived, interpreted and evaluated before possibly affecting land use practices.  相似文献   

10.
The dynamics of land-use practices (for example, forest versus settlements) is often a major driver of changes in terrestrial carbon (C). As the management and conservation of forest land uses are considered a means of reducing future atmospheric CO2 concentrations, the monitoring of forest C stocks and stock change by categories of land-use change (for example, croplands converted to forest) is often a requirement of C monitoring protocols such as those espoused by the Intergovernmental Panel on Climate Change (that is, Good Practice Guidance and Guidelines). The identification of land use is often along a spectrum ranging from direct observation (for example, interpretation of owner intent via field visits) to interpretation of remotely sensed imagery (for example, land cover mapping) or some combination thereof. Given the potential for substantial differences across this spectrum of monitoring techniques, a region-wide, repeated forest inventory across the eastern U.S. was used to evaluate relationships between forest land-use change (derived from a forest inventory) and forest cover change (derived from Landsat modeling) in the context of forest C monitoring strategies. It was found that the correlation between forest land-use change and cover change was minimal (<0.08), with an increase in forest land use but a net decrease in forest cover being the most frequent observation. Cover assessments may be more sensitive to active forest management and/or conversion activities that can lead to confounded conclusions regarding the forest C sink (for example, decreasing forest cover but increasing C stocks in industrial timberlands). In contrast, the categorical nature of direct land-use field observations reduces their sensitivity to forest management activities (for example, clearcutting versus thinning) and recent disturbance events (for example, floods or wildfire) that may obscure interpretation of C dynamics over short time steps. While using direct land-use observations or cover mapping in forest C assessments, they should not be considered interchangeable as both approaches possess idiosyncratic qualities that should be considered when developing conclusions regarding forest C attributes and dynamics across large scales.  相似文献   

11.
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973–2011 for an area north of Manaus (in Amazonas state), from 1984–2010 for south of Santarém (Pará state) and 1984–2011 near Machadinho d’Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d’Oeste, 57% and 41% of forests respectively were aged 6–15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth.  相似文献   

12.
李三  郭金禄  郑煜 《植物研究》2020,40(5):659-665
利用黑龙江省13个市(区)的170 820个数据,运用2SLS方法以森林覆被率等11个影响因素为指标,建立了3个不同时间段的静态面板和动态面板回归模型,探究了森林覆被率等影响因素与PM2.5时间滞后效应的关系。结果表明:①PM2.5的时间滞后效应是当期PM2.5浓度积累的影响因素,且随着时间的推移,PM2.5时间滞后效应对当期PM2.5浓度积累的促进作用逐渐减弱;②随着PM2.5时间滞后效应的逐渐减弱,森林覆被率、气温对PM2.5浓度积累所起的阻碍作用逐渐增强,PM10、CO对PM2.5浓度积累的促进作用逐渐增强,而风速对当期PM2.5浓度积累所起的阻碍作用逐渐减弱;③PM2.5时间滞后效应呈现出惯性的同时,森林覆被率、PM10、CO、气温、风速对PM2.5的作用也具有了惯性。  相似文献   

13.
Temporal variation in the composition of species assemblages could be the result of deterministic processes driven by environmental change and/or stochastic processes of colonization and local extinction. Here, we analyzed the relative roles of deterministic and stochastic processes on bird assemblages in an agricultural landscape of southwestern France. We first assessed the impact of land cover change that occurred between 1982 and 2007 on (i) the species composition (presence/absence) of bird assemblages and (ii) the spatial pattern of taxonomic beta diversity. We also compared the observed temporal change of bird assemblages with a null model accounting for the effect of stochastic dynamics on temporal beta diversity. Temporal assemblage dissimilarity was partitioned into two separate components, accounting for the replacement of species (i.e. turnover) and for the nested species losses (or gains) from one time to the other (i.e. nestedness-resultant dissimilarity), respectively. Neither the turnover nor the nestedness-resultant components of temporal variation were accurately explained by any of the measured variables accounting for land cover change (r2<0.06 in all cases). Additionally, the amount of spatial assemblage heterogeneity in the region did not significantly change between 1982 and 2007, and site-specific observed temporal dissimilarities were larger than null expectations in only 1% of sites for temporal turnover and 13% of sites for nestedness-resultant dissimilarity. Taken together, our results suggest that land cover change in this agricultural landscape had little impact on temporal beta diversity of bird assemblages. Although other unmeasured deterministic process could be driving the observed patterns, it is also possible that the observed changes in presence/absence species composition of local bird assemblages might be the consequence of stochastic processes in which species populations appeared and disappeared from specific localities in a random-like way. Our results might be case-specific, but if stochastic dynamics are generally dominant, the ability of correlative and mechanistic models to predict land cover change effects on species composition would be compromised.  相似文献   

14.
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.  相似文献   

15.
Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.  相似文献   

16.
17.
云南澜沧江流域土地利用和覆盖变化   总被引:10,自引:0,他引:10  
由人类活动引起的土地利用和地被覆盖的变化是地球上环境变化的主要原因。上世纪90年代是云南省经济发展和环境变化的活跃时期。本文通过现代卫星遥感技术、地理信息系统和其它多学科手段相结合 ,系统调查评估了云南澜沧江流域 1990年至 1998年间土地利用和地被覆盖的变化 ,结果显示流域中林业用地面积从 1990年的 6 4 9%增长到 1998年的6 6 4 % ,但是森林有林地 (郁闭度 >30 %的天然林和人工林 )从 1990年的 5 2 6 %减少到 1998年的 35 3%。并且分析大规模商业性森林砍伐、基础建设、经济作物的种植、刀耕火种、薪材过度采集和砍伐建筑用材等引起了森林的结构的显著变化和退化 ,从而导致了生物多样性的下降。  相似文献   

18.
This landscape-scale study combines analysis of multitemporal satellite imagery spanning 30 years and information from field studies extending over 25 years to assess the extent and causes of land use and land cover change in the Loitokitok area, southeast Kajiado District, Kenya. Rain fed and irrigated agriculture, livestock herding, and wildlife and tourism have all experienced rapid change in their structure, extent, and interactions over the past 30 years in response to a variety of economic, cultural, political, institutional, and demographic processes. Land use patterns and processes are explored through a complementary application of interpretation of satellite imagery and case study analysis that explicitly addresses the local–national spatial scale over a time frame appropriate to the identification of fundamental causal processes. The results illustrate that this combination provides an effective basis for describing and explaining patterns of land use and land cover change and their root causes.  相似文献   

19.
Dissolved organic matter (DOM) influences the physical, chemical, and biological properties of aquatic ecosystems. We hypothesized that controls over spatial variation in DOM quantity and composition (measured with DOM optical properties) differ based on the source of DOM to aquatic ecosystems. DOM quantity and composition should be better predicted by land cover in aquatic habitats with allochthonous DOM and related more strongly to nutrients in aquatic habitats with autochthonous DOM. Three habitat types [rivers (R), rivermouths (RM), and the nearshore zone (L)] associated with 23 tributaries of the Laurentian Great Lakes were sampled to test this prediction. Evidence from optical indices suggests that DOM in these habitats generally ranged from allochthonous (R sites) to a mix of allochthonous-like and autochthonous-like (L sites). Contrary to expectations, DOM properties such as the fluorescence index, humification index, and spectral slope ratio were only weakly related to land cover or nutrient data (Bayesian R 2 values were indistinguishable from zero). Strongly supported models in all habitat types linked DOM quantity (that is, dissolved organic carbon concentration [DOC]) to both land cover and nutrients (Bayesian R 2 values ranging from 0.55 to 0.72). Strongly supported models predicting DOC changed with habitat type: The most important predictor in R sites was wetlands whereas the most important predictor at L sites was croplands. These results suggest that as the DOM pool becomes more autochthonous-like, croplands become a more important driver of spatial variation in DOC and wetlands become less important.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号