首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.  相似文献   

2.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

3.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

4.
通过扫描电镜观察了宽叶泽苔草Caldesia grandisSamuel.的花器官发生。宽叶泽苔草 的萼片3枚,逆时针螺旋向心发生 ;花瓣3枚,呈一轮近同时发生,未观察到花瓣_雄蕊复合原基;雄蕊、心皮原基皆轮状向心 发生,最先近同时发生的6枚原基全部发育成雄蕊,随后发生的6枚原基早期并无差别,在发 育过程中逐渐出现形态差异,直至其中1-4枚发育成心皮,其余的发育成雄蕊;而后的几轮 心皮原基,6枚一轮,陆续向心相间发生。本文揭示了3枚萼片螺旋状的发生方式,并推测这种螺旋方式是泽泻科植物进化过程中保留下来  相似文献   

5.
Male and female flowers of the dioecious plant sorrel (Rumex acetosa) each produce three whorls of developed floral organs: two similar whorls of three perianth segments and either six stamens (in the male) or a gynoecium consisting of a fertile carpel and two sterile carpels (in the female). In the developing male flower, there is no significant proliferation of cells in the center of the flower, in the position normally occupied by the carpels of a hermaphrodite plant. In the female flower, small stamen primordia are formed. To determine whether the organ differences are associated with differences in the expression of organ identity genes, cDNA clones representing the putative homologs of B and C function MADS box genes were isolated and used in an in situ hybridization analysis. The expression of RAD1 and RAD2 (two different DEFICIENS homologs) in males and females was confined to the stamen whorl; the lack of expression in the second, inner perianth whorl correlated with the sepaloid nature of the inner whorl of perianth segments. Expression of RAP1 (a PLENA homolog) occurred in the carpel and stamen whorls in very young flower primordia from both males and females. However, as soon as the inappropriate set of organs ceased to develop, RAP1 expression became undetectable in those organs. The absence of expression of RAP1 may be the cause of the arrest in organ development or may be a consequence.  相似文献   

6.
The UNUSUAL FLORAL ORGANS (UFO) gene is required for several aspects of floral development in Arabidopsis including specification of organ identity in the second and third whorls and the proper pattern of primordium initiation in the inner three whorls. UFO is expressed in a dynamic pattern during the early phases of flower development. Here we dissect the role of UFO by ubiquitously expressing it in ufo loss-of-function flowers at different developmental stages and for various durations using an ethanol-inducible expression system. The previously known functions of UFO could be separated and related to its expression at specific stages of development. We show that a 24- to 48-hour period of UFO expression from floral stage 2, before any floral organs are visible, is sufficient to restore normal petal and stamen development. The earliest requirement for UFO is during stage 2, when the endogenous UFO gene is transiently expressed in the centre of the wild-type flower and is required to specify the initiation patterns of petal, stamen and carpel primordia. Petal and stamen identity is determined during stages 2 or 3, when UFO is normally expressed in the presumptive second and third whorl. Although endogenous UFO expression is absent from the stamen whorl from stage 4 onwards, stamen identity can be restored by UFO activation up to stage 6. We also observed floral phenotypes not observed in loss-of-function or constitutive gain-of-function backgrounds, revealing additional roles of UFO in outgrowth of petal primordia.  相似文献   

7.
掌叶木的花器官发生及其系统学意义   总被引:7,自引:0,他引:7  
利用扫描电子显微镜和光学显微镜观察了掌叶木的花器官发生过程。观察结果表明: 花序原基最先发生, 然后形成两个大小不一的花原基; 萼片原基的发生不同步, 螺旋状向心发生; 4-5枚花瓣原基以接近轮状方式近同时发生; 不存在花瓣-雄蕊复合原基; 7-8枚雄蕊原基为近同时发生, 其生长较花瓣原基快; 心皮原基最后发生, 3枚心皮原基为同时发生。花为单性花。在雌花中, 子房膨大而雄蕊退化。在雄花中, 雄蕊正常发育, 子房退化。讨论了掌叶木花器官发生和发育的系统学意义。  相似文献   

8.
Ultrastructural differences were detected between a cytoplasmic male sterile tobacco cybrid (Nicotiana sp.) formed by protoplast fusion and normal, fertile tobacco. Cell structure was compared between anther primordia from normal, fertile tobacco and anther primordia from the cybrid using stereological methods. Particular emphasis was placed on the ultrastructure of mitochondria because of their known relationship to cytoplasmic male sterility in this cybrid and other plants. The volume density of mitochondria in cybrid anther primordia (6.3%) was significantly lower than in normal, fertile anther primordia (10.1%), although mitochondria from both plants contained similar amounts of cristae and profiles were of similar relative area. Dictyosomes and vacuoles also differed in volume density but not at a statistically significant level. Although the volume density of plastids did not differ, a larger amount of starch was stored within plastids in cybrid anther primordia than in normal, fertile anther primordia. These results are compatible with the hypothesis that an abnormally low rate of mitchondrial replication, and the resultant limit on adenosine triphosphate production, could contribute to cytoplasmic male sterility in the cybrid.  相似文献   

9.
In both male and female flowers of H. morsus-ranae the primordia of the floral appendages appear in an acropetal succession consisting of alternating trimerous whorls. In the male flower a whorl of sepals is followed by a whorl of petals, three whorls of stamens, and a whorl of filamentous staminodes. The mature androecial arrangement therefore consists of two antisepalous stamen whorls, an antipetalous whorl of stamens, and antipetalous staminodes. Shortly before anthesis, basal meristematic upgrowth between filaments of adjacent whorls produces paired stamens, joining Whorls 1 and 3, and Whorl 2 with the staminodial whorl. A central domelike structure develops between the closely appressed filaments of the inner stamen and staminodial whorl, giving the structure a lobed appearance. After petal inception in the female flower a whorl of antisepalous staminodes develop, each of which may bifurcate to form a pair of staminodes. During staminode development a girdling primordium arises by upgrowth at the periphery of the floral apex. The girdling primordium rapidly forms six gynoecial primordia, which then go on to produce six free styles with bifid stigmas. Intercalary meristem activity, below the point of floral appendage attachment, leads to the production of a syncarpous inferior ovary with six parietal placentae. The styles and carpels remain open along their ventral sutures. During the final stages of female floral development, several hundred ovules develop along the carpel walls, and three nectaries develop dorsally and basally on the three antipetalous styles.  相似文献   

10.
11.
12.
大戟科麻疯树属三种植物花器官发生   总被引:1,自引:0,他引:1  
利用扫描电子显微镜观察了大戟科Euphorbiaceae麻疯树属Jatropha麻疯树J. curcas L.、佛肚树J. podagrica Hook.和棉叶麻疯树J. gossypifolia L.花器官发生。结果表明: 麻疯树、佛肚树和棉叶麻疯树花萼原基均为2/5型螺旋发生。在同一个种不同的花蕾中, 花萼的发生有两种顺序: 逆时针方向和顺时针方向。远轴面非正中位的1枚先发生。5枚花瓣原基几乎同时发生。雄花中雄蕊两轮, 外轮对瓣, 内轮对萼。研究的3种麻疯树属植物雄蕊发生方式有两种类型: 麻疯树亚属麻疯树的5枚外轮雄蕊先同时发生, 5枚内轮雄蕊后同时发生, 佛肚树亚属佛肚树和棉叶麻疯树雄蕊8-9枚, 排成两轮, 内外轮雄蕊同时发生。雌花的3枚心皮原基为同时发生。麻疯树属单性花, 雌花的子房膨大而雄蕊退化, 雄花的雄蕊正常发育, 子房缺失。根据雄蕊发生方式, 支持将麻疯树属分为麻疯树亚属subgen. Jatropha和佛肚树亚属subgen. Curcas。  相似文献   

13.
In many flowering plants, flowers consist of two peripheral organs, sepals and petals, occurring in outer two whorls, and two inner reproductive organs, stamens and carpels. These organs are arranged in a concentric pattern in a floral meristem, and the organ identity is established by the combined action of floral homeotic genes expressed along the whorls. Floral organ primordia arise at fixed positions in the floral meristem within each whorl. The RABBIT EARS (RBE) gene is transcribed in the petal precursor cells and primordia, and regulates petal initiation and early growth in Arabidopsis thaliana. We investigated the spatial and temporal expression pattern of a RBE protein fused to the green fluorescent protein (GFP). Expression of the GFP:RBE fusion gene under the RBE cis-regulatory genomic fragment rescues the rbe petal defects, indicating that the fusion protein is functional. The GFP signal is located to the cells where RBE is transcribed, suggesting that RBE function is cell-autonomous. Ectopic expression of GFP:RBE under the APETALA1 promoter causes the homeotic conversion of floral organs, resulting in sterile flowers. In these plants, the class B homeotic genes APETALA3 and PISTILLATA are down-regulated, suggesting that the restriction of the RBE expression to the petal precursor cells is crucial for flower development.  相似文献   

14.
15.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

16.
The inflorescence and floral development of Caldesia grandis Samuel is reported for the first time in this paper. The basic units of the large cymo‐thyrsus inflorescence are short panicles that are arranged in a pseudowhorl. Each panicle gives rise spirally to three bract primordia also arranged in a pseudowhorl. The branch primordia arise at the axils of the bracts. Each panicle produces spirally three bract primordia with triradiate symmetry (or in a pseudowhorl) and three floral primordia in the axils of the bract primordia. The apex of the panicle becomes a terminal floral primordium after the initiations of lateral bract primordia and floral primordia. Three sepal primordia are initiated approximately in a single whorl from the floral primordium. Three petal primordia are initiated alternate to the sepal primordia, but their subsequent development is much delayed. The first six stamen primordia are initiated as three pairs in a single whorl and each pair appears to be antipetalous as in other genera of the Alismataceae. The stamen primordia of the second whorl are initiated trimerously and opposite to the petals. Usually, 9–12 stamens are initiated in a flower. There is successive transition between the initiation of stamen and carpel primordia. The six first‐initiated carpel primordia rise simultaneously in a whorl and alternate with the trimerous stamens, but the succeeding ones are initiated in irregular spirals, and there are 15–21 carpels developed in a flower. Petals begin to enlarge and expand when anthers of stamens have differentiated microsporangia. Such features do not occur in C. parnassifolia. In the latter, six stamen primordia are initiated in two whorls of three, carpel primordia are initiated in 1–3 whorls, and there is no delay in the development of petals. C. grandis is thus considered more primitive and C. parnassifolia more derived. C. grandis shares more similarities in features of floral development with Alsma, Echinodorus, Luronium and Sagittaria. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 39–47.  相似文献   

17.
Crataegus section Douglasii exhibits variation in stamen number per flower typical for the genus throughout North America. To understand the developmental basis for this variation we studied the early floral ontogeny of the three taxa in section Douglasii: C. douglasii (both Pacific northwest and the upper Great Lakes basin), C. rivularis, and C. suksdorfii. Crataegus suksdorfii, like all known diploid Crataegus, has ≈20 stamens; the two other taxa have ≈10 stamens, a condition associated only with polyploidy. In all taxa petal primordia and a whorl of five pairs of stamen primordia develop from five common primordia. The 10-stamen∗∗∗ condition results from loss of two whorls of five stamens that are subsequently formed in C. suksdorfii. Loss of these two whorls in the 10-stamen taxa is the result of neither a smaller floral apex at initiation, nor a smaller flower at anthesis. Stamen number variability, particularly in C. douglasii and C. rivularis, is the result predominantly of fewer than two stamen primordia developing between adjacent petal primordia. Pollen production in C. douglasii is half that in C. suksdorfii because of the reduction in stamen number. The results are presented and discussed in terms of morphogenetic explanations of meristic variation.  相似文献   

18.
Floral organogenesis and development of the bushy perennial legume Astragalus caspicus were studied using epi-illumination light microscopy techniques. Based on our observations, flowers are in axillary two-flowered racemes, initiate all 21 floral organs and show precocious appearance of zygomorphy. The order of floral organ initiation is unidirectional in whorls starting from the abaxial position of the flower with a high degree of overlap. Another important ontogenetic feature is the existence of two successive common primordial stages categorized as primary and secondary. The primary common primordia produce antesepalous stamens and secondary common primordia. In contrast, the five secondary common primordia subdivide into a petal and an antepetalous stamen primordia. Our findings on floral ontogeny of A. caspicus provide new evidence for the complex and variable floral initiation and development in legumes. The floral apex with strong overlapping initiation of different organs illustrates a paradox in which different capabilities must be presumed to exist simultaneously. Moreover, two extraordinary types of common primordia represent possibly an advanced evolutionary trend where time intervals between the initiations of different floral organs in Papilionoideae are shortened.  相似文献   

19.
20.
A comparative developmental study of the inflorescence and flower of Hamamelis L. (4-merous) and Loropetalum (R. Br.) Oliv. (4–5 merous) was conducted to determine how development differs in these genera and between these genera and others of the family. Emphasis was placed on determining the types of floral appendages from which the similarly positioned nectaries of Hamamelis and sterile phyllomes of Loropetalum have evolved. In Hamamelis virginiana L. and H. mollis Oliv. initiation of whorls of floral appendages occurred centripetally. Nectary primordia arose adaxial to the petals soon after the initiation of stamen primordia and before initiation of carpel primordia. In Loropetalum chinense (R. Br.) Oliv. floral appendages did not arise centripetally. Petals and stamens first arose on the adaxial portion, and then on the abaxial portion of the floral apex. The sterile floral appendages (sterile phyllomes of uncertain homology) were initiated adaxial to the petals after all other whorls of floral appendages had become well developed. In all three species, two crescent shaped carpel primordia arose opposite each other and became closely appressed at their margins. Postgenital fusion followed and a falsely bilocular, bicarpellate ovary was formed. Ovule position and development are described. The nectaries of Hamamelis and sterile phyllomes of Loropetalum rarely develop as staminodia, suggesting a staminodial origin. However, these whorls arise at markedly different times and are therefore probably not derived from the same whorl of organs in a common progenitor. This hypothesis seems probable when one considers that the seemingly least specialized genus of the tribe, Maingaya, bears whorls of both staminodia and sterile phyllomes inside its whorl of stamens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号