首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Part 1, under the frontispiece portrait of Dr. N. B. Eales,the words ‘President 1948–1951’ should havebeen added. Page 103, line 49, for ‘Newton Collection’ read‘Norman Collection (Canon Norman)’. 185, line 37, for ‘capillaris’ read ‘capillacca’. 188, Table 1, for ‘bemoralis’. read ‘nemoralis’. 188, Table 2, for ‘Cochlicella acuta (Müll)? ventrosa(Fér.)’ read ‘Cochlicella ventrosa (Fér.)’. 191, line 24, for ‘araheo-’ read ‘archeo-’.  相似文献   

2.
ERRATA     
On page 235, Table I: Equation (1) for Node 4 should read ‘A/Ac=0·840+0·0006Ac;Equation (2) for Node 4 should read ‘A=0·89Ac’and Equation (2) for Node 5–10 should read ‘A=0·813Ac’.  相似文献   

3.
ERRATA     
WARBURG, M. R., 1965. On the water economy of some Australianland snails. Proc. malac. Soc. Lond. 36, 297–305. Page 298: second line from bottom, should read ‘within± 1 µg for Themapupa’. Page 300: Fig. 2 legend, should read ‘Evaporative waterloss from Sinumelon remissum (a), Pleuroxia sp. (b) and Themapupaadelaidae (c)’. Page 300: section 4 heading, should read ‘Continuous curvesfor water loss’. Page 301: second line, for ‘Fig. 9’ read ‘Fig.3’. Page 301: Table 1, last line, for ‘0.120024’ read‘0.12024’. Present address: Israel Institute for Biological Research, Ness-Ziona,Israel.  相似文献   

4.
ERRATA     
Page 806, Preparation of Mitochondrial Fraction, line 4: The following should be inserted between ‘centrifugedat’ and ‘20 000 g for’: 3000 for 10 mm. Thesupernatant was centrifuged at The following corrections are required: Page 104, line 20: ‘2-hydroxylation’ should read ‘2-ß3-hydroxylation’ Page 106, line 11: ‘of Ga8’ should read ‘to GA8’ Page 113, last line:‘length 50 µm’ shouldread ‘length 150 µm’ Formula 15 should read: Formula 17 should read: y(0)– y* = ß1V12V2 page 118: Formula 18 should read: Formula 23 should read: Formula 24 should read:   相似文献   

5.
ERRATA     
Effects of coupled solute and water flow in plant roots withspecial reference to Brouwer's experiment. Edwin L. Fiscus. p. 71 Abstract: Line 3 delete ‘interval’ insert‘internal’. p. 73 Materials and Methods: line 6: delete ‘diversion’ insert ‘division’ line 9 equation should read Jv=Lp PRT(C0C1). 74 Last line of figure legend: 10–1 should read 10–11. 75 Line 11: delete ‘seems’ insert ‘seem’. le 1 column heading—106 should read 1011. 77 delete ‘...membrane in series of...’ insert ‘membranein series or...’ Delete final paragraph.  相似文献   

6.
Haploids (2n =24) of the common tetraploid (2n=48) potato (SolanumtuberosumL.) provide promising material for attacking many problemsconcerned with the genetics, cytogenetics and breeding of thisspecies. Interspecific 4xx2xcrosses betweenSolanum tuberosumgp.Andigenaorgp.Tuberosumcultivars as pistillate parents andSolanum tuberosumgp.Phurejaassource of pollen (hereafter ‘pollinator’) have beenused to produce maternally derived haploids through parthenogenesis.This paper discusses the nature of the ‘pollinator’effect in haploid extraction. The ‘pollinator’ hada significant effect on haploid frequencies following 4xx2xcrosses.The ‘pollinator’ effect seems to operate via theendosperm, in which haploid (n=2x) embryos are associated withhexaploid endosperm. A superior ‘pollinator’ appearsto have its effect by contributing two haploid (n) gametes tothe central cell. 2n pollen; double fertilization; endosperm; ploidy manipulations; Solanum tuberosum  相似文献   

7.
This study was conducted with Lolium temulentum, Festuca pratensis,and the two hybrids L. multiflorum x F. pratensis ‘Elmet’and L. perenne x F. pratensis ‘Prior’. In a comparisonof various durations (7–42 d) of pretreatment at 4 or7 °C the highest yield of microspore-derived callus of L.temulentum was obtained after pretreatment of spikes at 7 °Cfor 28 d, conditions which also proved optimal for panicle pretreatmentwith F. pratensis. For ‘Elmet’, durations of 21–42d were optimal, and for ‘Prior’ the responses tendedto decline with increasing duration. In L. temulentum addition of charcoal (1–2 g l–1)to medium containing 2, 4-D and KN wa  相似文献   

8.
On page 379 in line 7 of the legend to Fig. 4 the closed squareshould be an open square. On page 380, under the heading Survival of pierced seeds, line3 should read ‘...and 94 per cent respectively, aftercooling at 1 °C h–1 to -20 °C with nucleationwicks. Apart from a small lesion...’  相似文献   

9.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

10.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

11.
Complete submergence of rice plants (Oryza sativa L. cv. ‘IR42’)in dilute nutrient solution for 3–6 d almost stopped theaccumulation of dry matter, depressed soluble carbohydrate concentrationby over 75% and promoted chlorosis in fully expanded leaves.Increase in fresh weight by the shoots was not impaired. Extensionby the youngest visible leaf was stimulated. Extension by thenext leaf to appear was retarded by submergence. These growthresponses to submergence were associated with a 1-5-fold increasein the partial pressure of endogenous ethylene (ethene). Applying ethylene (0.3–0.35 Pa) in the gas-phase to non-submergedplants reproduced some, but not all, of these effects of submergence.Thus, greater leaf extension and chlorosis of submerged plantscould be attributable to accumulated ethylene but neither theslow relative growth rate nor the decreased extension of leavesemerging after the start of submergence could be so attributed. Two cultivars (‘FR13A’ and ‘Kurkaruppan’)already known to tolerate submergence, differed little fromsubmergence-intolerant ‘IR42’ in their relativegrowth rate and soluble carbohydrate concentration during submergence.However, their underwater leaf extension was less than in ‘IR42’and chlorosis was much less prevalent, especially in ‘FR13A’.Similarly, ethylene supplied to non-submerged plants was a lesseffective promotor of leaf extension and chlorosis in the twosubmergence tolerant cultivars. Application of 1.0 kPa carbondioxide in the gas-phase prevented the chlorosis response toethylene. The results indicate that accumulated ethylene is a likely causeof fast leaf extension and chlorosis in submergence intolerantforms of rice, particularly when amounts of dissolved carbondioxide are minimal. Key words: Oryza sativa L., aeration, ethylene (ethene), stress-tolerance  相似文献   

12.
Vessel element formation in cultured carrot-root phloem slices   总被引:2,自引:0,他引:2  
The effects of light, auxin and cytokinin on vessel elementformation in phloem slices of carrot root were examined. When slices of carrot cultivars, ‘Nakamura-senko-futo’and ‘Yamada-hyakunichisenk6- naga’, preculturedin the dark on modified Murashige and Skoog's medium for twodays were cultured on a medium containing 5x10–6 M 2,4-Din the dark, no vessel element formation occurred. When preculturedslices were cultured in the light with 5x10–6M 2,4-D,vessel element formation was remarkable. But when 5x10–7Mkinetin, benzyladenine or zeatin was added, vessel elementswere readily formed even in the dark. When slices were cultured in the light, a cytokinin-like substance(s)that causes vessel element formation was produced in the slices,then was released to the medium. The substance(s) was fairlystable to heat. In slices of carrot cultivars, kuroda-gosun, ‘Kintoki’and ‘Kokubu-senk6-6naga’, a different result forvessel element formation was obtained. When slices of thesecultivars were cultured on a medium containing 5x10–6M2,4-D in the dark, vessel element formation was remarkable.It seemed, therefore, that these cultivars contain enough ofa cytokinin-like substance(s) to form vessel elements. In fact,vessel element forming activity was found in the alcohol extractof carrot root phloem from these cultivars. (Received June 8, 1971; )  相似文献   

13.
A series of experiments was conducted to assess net CO2assimilationand growth responses to waterlogging of grafted and seedlingtrees in the genus Annona. Seedlings of A. glabra, A. muricataandA. squamosa L., and scions of ‘Gefner’ atemoya(A. squamosaxA. cherimola Mill.), ‘49-11’ (‘Gefner’atemoyaxA. reticulata L.), ‘4-5’ (‘Priestley’atemoyaxA. reticulata), A. reticulata grafted onto either A.glabra, A. reticulata orA. squamosa rootstocks were floodedfor up to 60 d. Soil anaerobiosis occurred on the third dayof flooding. Seedlings ofA. glabra and A. muricata, and thescions ‘49-11’, ‘Gefner’ atemoya, andA. reticulata grafted onto A. glabra rootstock were consideredflood tolerant based on their ability to survive and grow inflooded conditions. Scions of the normally flood-sensitive A.reticulata, ‘Gefner’ atemoya, and ‘49-11’tolerated root waterlogging when grafted onto the flood-tolerantspecies, A. glabra. In contrast, flooding of A. squamosa seedlingsand rootstocks, and A. reticulata rootstocks greatly reducedgrowth and net CO2assimilation rates, and resulted in 20–80%tree mortality. Stem anatomical responses to long-term flooding(12 continuous months) were assessed in seedlings of A. glabraand A. muricata, and trees of ‘49-11’ grafted ontoA. glabra. Flooded trees developed hypertrophied stem lenticels,particularly in A. glabra, and enlarged xylem cells resultingin thicker stems with reduced xylem density. Flooding did notincrease air spaces in pre-existing xylem near the pith or inxylem tissue that was formed during flooding. Thus, flood tolerancedid not involve aerenchyma formation in the stem. Copyright1999 Annals of Botany Company Flood tolerance, net CO2assimilation, photosynthesis, stem anatomy, shoot growth, anaerobiosis, Annonaceae.  相似文献   

14.
The effects of the foliar application of phytocidal concentrationsof 2-methyl-4-chlorophenoxyacetic acid (MCPA) on change in totaldry weight, and in ‘available carbohydrate’ (starch,‘total’ and ‘reducing’ sugars), totalnitrogen, phosphorus, potassium, calcium, and magnesium of ‘tops’and roots of tomato plants have been followed over a periodof 14 days following spraying. There were two main treatments—‘nutrient’(nutrient supply to roots continued after spraying) and ‘water’(distilled water only supplied to roots after spraying) and‘water’ (distilled water only supplied to rootsafter spraying)—the sub-treatments consisting of ‘MCPA’versus ‘no-MCPA’ for each of the main treatments.Twelve different times of sampling were used. In analysing the present data, the quantity ‘residualdry weight’ (total dry weight less ‘available carbohydrate’),which was originally introduced by Mason and Maskell as a basisof reference for analyses of plant organs in short-period experimentsnot involving appreciable growth, has been used as an estimateof the permanent structure of plant growth. This new use ofthe ‘residual dry weight’ basis has brought outimportant features which were obscured when the data were leftin their primary form (as percentages of total dry weight oramounts per plant). Growth, as measured by increase in ‘residual dry weight’,was greatly inhibited by 2-methyl-4-chlorophenoxyacetic acidshortly after spraying, in both the presence and the absenceof nutrient. In the presence of 2-methyl-4-chlorophenoxyacetic acid, netassimilation rate (estimated as rate of increase in total dryweight per gram ‘residual dry weight’ of the ‘tops’)was greatly diminished while uptake of total nitrogen and ofP2O5 (estimated as increase in total nitrogen or of P2O5 ofthe whole plant per day per 1 g. ‘residual dry weight’of the roots) appeared to undergo a similar but much smallerdiminution. It seemed probable, however, that in the presenceof MCPA a larger proportion of the carbohydrate actually formedwas utilized for synthesis of aminoacids and protein. In the plant as a whole there was no evidence of actual depletionof ‘available carbohydrate’ as a result of MCPAtreatment, this fraction showing a steady increase in all treatmentsthroughout the experiment. The rate of increase was, however,much reduced by MCPA treatment. The ‘tops’ presentedmuch the same picture as the whole plant, but for the rootsthe situation was quite different. While the roots of the ‘no-MCPA’plants and also of the ‘MCPA-water’ plants showeda steady increase in available carbohydrate, those of the ‘MCPA-nutrient’plants rose only very slightly (from the initial value of 8mg. per plant to about 10 mg.) during the first 2 days, andthen in the next 2 days declined to a value (about 6 mg.) belowthe initial and remained at this low level for the rest of theexperiment. It is suggested that the phytocidal effect of 2-methyl-4-chlorophenoxyaceticacid in the presence of nutrient may be due to depletion ofthe ‘available carbohydrate’ supplies in the roots,which is shown to be brought about, in part, by reduced transportfrom the tops, and partly by the relatively greater utilizationof the carbohydrate present. These results offer an explanationfor the facts that plants showing vigorous growth are more easilykilled by MCPA and that perennial plants, particularly thosewith storage tissues in their roots, are more resistant. Further,they suggest the useful practical application that MCPA treatmentshould be given when the carbohydrate reserves of the rootsare at a minimum. For perennial plants, conditions might beexpected to be optimal for the application of MCPA in late spring,at a time when the first ‘flush’ of growth is slowingdown and before any appreciable new reserves of carbohydratehave been accumulated. It was also shown that 2-methyl-4-chlorophenoxyacetic acid preventedthe net synthesis of starch, but still permitted an appreciablenet formation of sucrose. 2-methyl-4-chlorophenoxyacetic acid appeared to have no effecton the uptake of potassium, calcium, or of magnesium. The lackof effect on potassium is contrasted with the previous observationby Rhodes, Templeman, and Thruston (1950) that sub-lethal concentrationsof MCPA, applied over a relatively long period to the rootsof tomato plants, specifically depressed the uptake of potassium.  相似文献   

15.
p. 186, right column line 11 ‘27.2 KBq’ change to‘37.2 MBq’ p. 187, left column line 8 ‘27.2 KBq’ change to‘37.2 MBq’ line 10 ‘13.6 KBq’ change to ‘18.6 MBq’ line 11 ‘13.6 KBq’ change to ‘18.6 MBq’ line 21 ‘89%’ change to ‘80%’ right column line 24 ‘CLC-NH4’ change to ‘CLC-NH2’ P. 189, Table 1 appeared incorrectly: it should appear as indicated.  相似文献   

16.
Abstract line 12: for ‘below 2.03, 0.53 and 0.28 mequiv.K+l–1 respectively’ read ‘below 0.28, 0.53and 2.03 mequiv. K+l–1 respectively.’  相似文献   

17.
The success of Triticum aestivumxZea mays crosses, used to producewheat doubled haploids, is influenced by light intensity. Toexamine the basis for this response, pollen tube growth, embryosurvival and indicators of photosynthetic rate were measuredin two wheat cultivars (‘Karamu’ and ‘Kotuku’)crossed with maize at two irradiance levels (250 or 750 µmolm-2s-1, PAR). Pollen tube growth was significantly affectedby light intensity in ‘Karamu’ plants but not in‘Kotuku’ plants, despite both cultivars being pollinatedby the same maize source. The percentage of pollen tubes reachingthe cavity between the ovarian wall and integuments, or in themicropyle of ‘Karamu’ plants at high light intensity(65%) was nearly three-times greater than that at low lightintensity (22%). Thus, either low light intensity can affectthe maternal wheat plant in a way that inhibits pollen tubegrowth and/or high light intensity may promote pollen tube growthin ‘Karamu’ plants. Significant differences in ratesof electron transport in plants grown at the two light intensitiesindicated that the rate of photosynthesis may also have an effecton pollen tube growth. These results have importance for improvingthe efficiency of wheat x maize crosses and other wide cerealcrosses. Copyright 2001 Annals of Botany Company Intergeneric hybridization, light intensity, pollen tube growth, embryo survival, Triticum aestivum, wheat,Zea mays , maize  相似文献   

18.
Pattern of Respiration of a Perennial Ryegrass Crop in the Field   总被引:3,自引:0,他引:3  
‘Dark’ respiratory losses of CO2 were measured ona one year old sward of S24 perennial ryegrass (Lolium perenneL.) at intervals during a 74 day reproductive growth period,between April and June, and a 21 day vegetative growth period,in July and August. Part of the sward was shaded for one weekbefore measure ments commenced. Measurements of ‘dark’respiration continued for 46 hand it was possible to distinguishtwo components which are designated ‘maintenance’and ‘synthetic’ ‘Maintenance’ respiration was taken to be the meanrate of CO2 efflux after 40–46 h darkness. When calculatedon a plant d. wt basis at 15°C it ranged between 6 to 32mgCO2 g-1 day-1 during reproductive growth and 10–14 mgCO2 g-1 day-1 during vegetative growth. During reproductivegrowth, sward protein content ranged between 7–23 percent and when maintenance respiration was recalculated on thebasis of protein content it changed relatively little throughoutthe growth period (90–140 mg CO2 g pro tein-1 day-1);the value for vegetative growth ranged between 70–100mgCO2 g protein-day-1. Total ‘synthetic’ CO2 flux was determined duringreproductive growth and a rate of ‘synthetic’ CO2flux was determined during both reproductive and vegetativegrowth. Between 15 and 35 per cent of the CO2 fixed in the previousphotoperiod was lost in ‘synthetic’ respirationof above-ground material in reproductive swards. Previous shadingincreased the proportion of ‘synthetic’ CO2 lossfrom above ground. The rate of ‘synthetic’ CO2 outputduring the first hours of darkness increased with amount ofCO2 fixed in the previous photoperiod, although it was not proportionalto it. There is some evidence that assimilate is ‘carried-over’from one photoperiod to the next.  相似文献   

19.
This paper reports further studies on the characteristics ofthe storage protein fraction (hordein) of barley. Hordein consistsof two groups of polypeptides (termed ‘B’ and ‘C’)coded by two separate but linked loci. Whereas the ‘C’polypeptides are readily soluble and extracted in 60% (v/v)ethanol at room temperature, the ‘B’ group is moresoluble in, and therefore more efficiently extracted by, 50%(v/v) propan-1-ol or 45% (v/v) propan-2-ol at elevated temperaturesand in the presence of 2-mercaptoethanol. However, the mostefficient conditions for hordein extraction (50% propan-1-ol+ 2% (v/v) 2-mercaptoethanol at 60 °C) also extract somecontaminating non-hordein polypeptides resulting in an apparentlyincreased lysine content of the hordein fraction. Amino acid analysis of the purified ‘B’ and ‘C’hordein groups shows that, whereas ‘C’ hordein containsmore glutamate + glutamine, proline, and phenylalanine than‘B’ hordein, it contains only traces of lysine andsulphur amino acids in contrast to ‘B’ hordein whichcontains 0·5% lysine 0·6% methionine, and 2·5%cysteine. Equilibrium sedimentation analyses carried out on the purified‘B’ and ‘C’ groups indicates that thepreparations were reasonably monodisperse with molecular weightsof approximately 32 000 and 52 000 respectively. These valuesare considerably lower than those previously determined by SDS-PAGE.  相似文献   

20.
Continuous flooding of the soil (‘flooded’ treatment)gave best growth of IR-8 variety of rice whereas soil drainedfor 4 weeks and then flooded for 8 (‘drained and flooded’treatment) resulted in poorest growth and chlorotic plants.Plants grown in the continuously drained soil (‘drained’treatment) and those in the soil flooded for 4 weeks and thendrained for 8 (‘flooded and drained’ treatment)showed intermediate growth. There were no differences in therelative water content of plants growing in the various treatments.Analyses of plant tissues showed that a consideration of therelative concentration of Fe, Mn, and P in the shoots is mostclosely related to the performance of rice under various culturalconditions. An increase in the concentration of Fe in the planttissues following flooding was correlated with the best growth(‘flooded’ treatment) unless it was accompaniedby high level of Mn (as in the ‘drained and flooded’treatment) which may have proved toxic, e.g. by interferencewith Fe metabolism as was evidenced by chlorosis. Measurementsof oxidation-reduction potentials, oxygen diffusion rates, andthe concentration of exchangeable and soluble Fe and Mn in thesoils have shown that the ‘drained and flooded’treatment caused the most extreme reducing conditions. Floodingaccompanied by the development of extreme reducing conditionsled to a greater accumulation of Mn in the shoots (‘drainedand flooded’ treatment) whereas flooding accompanied bythe maintenance of oxidizing conditions (‘flooded’treatment) resulted in a lower uptake of Mn. Growth of riceplants for 4 weeks in the drained soil did not fit them forthe reduced conditions which developed during subsequent flooding(‘drained and flooded’ treatment).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号