首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogenin is a self-glucosylating protein involved in the initiation reactions of glycogen synthesis. Initiation occurs in two stages, requiring first the covalent attachment of a glucose residue to Tyr-194 of glycogenin and then elongation to form an oligosaccharide chain. The latter reaction is known to be catalyzed by glycogenin itself. The glycogenin sequence determined from the protein by Campbell and Cohen (Campbell, D. G., and Cohen, P. (1989) Eur. J. Biochem. 185, 119-125) was used to design oligonucleotide probes to screen a rabbit muscle lambda gt11 library. A cDNA was isolated that predicted an amino acid sequence identical to that of Campbell and Cohen, except that Cys residues replaced Ser-88 and Leu-97. Northern analysis indicated a strongly hybridizing message of 1.8 kilobases, present in most tissues including skeletal muscle, but much weaker in kidney and scarcely detectable in liver. A much weaker 3-kilobase message was also detected in muscle. Polymerase chain reaction was used to isolate DNA fragments encoding a portion of glycogenin from rat and cow. The sequence of this segment was > 90% identical at the amino acid level across the three species, indicating that glycogenin is a highly conserved protein. Using the pET-8c vector, the glycogenin protein was expressed in Escherichia coli. Incubation of the recombinant glycogenin with UDP-[14C]glucose and Mn2+ resulted in labeling of the glycogenin protein, indicating that the recombinant glycogenin was enzymatically active and capable of self-glucosylation. Furthermore, after incubation with UDP-glucose, the recombinant glycogenin could serve as a substrate for glycogen synthase, leading to the production of high M(r) polysaccharide. Therefore, production of functional glycogenin did not require the intervention of any other mammalian protein.  相似文献   

2.
Aitken SM  Kirsch JF 《Biochemistry》2004,43(7):1963-1971
Cystathionine beta-synthase (CBS) effects the condensation of l-serine with l-homocysteine to form l-cystathionine. A series of active-site mutants, T81A, S82A, T85A, Q157A/E/H, and Y158F, was constructed to investigate effects on catalysis and reaction specificity in yeast CBS (yCBS). The effects of these mutations on the k(cat)/K(m)(L-Ser) for the beta-replacement reaction range from a reduction of only 3-fold for Y158F to below detectable levels for the Q157A and Q157E mutants. The order of importance of these residues to the beta-replacement reaction is Gln157 >or= Thr81 > Ser82 > Thr85 approximately Tyr158. All seven of the mutant enzymes catalyze a competing beta-elimination reaction, in which L-Ser is hydrolyzed to NH(3) and pyruvate. The ping-pong mechanism of CBS was thus expanded to include the latter reaction for these mutants. This activity is not detectable for wild-type yCBS, suggesting that the mutations result in a shift in the equilibrium between the open and the closed conformations of the active site of yCBS-substrate complexes. The Q157H and Y158F mutants additionally suffer suicide inhibition via a mechanism in which the released aminoacrylate intermediate covalently attacks the internal aldimine of the enzyme.  相似文献   

3.
The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation.  相似文献   

4.
We studied the photoreaction of a blue-light sensor PixD protein of Thermosynechococcus elongatus that has the blue-light-using flavin (BLUF) domain. The Tyr8 and Gln50 residues of the protein were modified to phenylalanine, alanine, or asparagine (Y8F, Y8A, Q50N, and Q50A) by site-directed mutagenesis. The following results were obtained. (1) At room temperature, blue-light illumination induced the red shift of the absorption bands of flavin in the wild-type (WT) protein but not in the Y8F, Y8A, Q50A, and Q50N mutant proteins, as reported [Okajima, K., et al. (2006) J. Mol. Biol. 363, 10-18]. (2) At 80 K, neither the Q50N nor the Q50A mutant protein accumulated the red-shifted form. (3) At 80 K, the Y8F protein photoaccumulated the red-shifted forms to an extent that was half that in the WT protein at a 43-fold slower rate, and the Y8A protein to the one-fourth the extent at a 137-fold slower rate. (4) The red-shifted form in the Y8F protein was stable below 240 K and became unstable above 240 K in the dark. (5) The illumination of the Y8F protein at 150 K accumulated the red-shifted form at the beginning, and the prolonged illumination accumulated the flavin anions by the secondary photoreaction. (6) The results indicate that Tyr8 is not indispensable for the accumulation of the red-shifted form at least at 80 K. (7) Photoconversion mechanisms in the WT and Tyr8-mutated proteins are discussed in relation to the schemes with and without the electron transfer between Tyr8 and flavin in the first step of the photoconversion.  相似文献   

5.
Glycogenin acts in the initiation step of glycogen biosynthesis by catalyzing a self-glucosylation reaction. In a previous work [de Paula et al., Arch. Biochem. Biophys. 435 (2005) 112-124], we described the isolation of the cDNA gnn, which encodes the protein glycogenin (GNN) in Neurospora crassa. This work presents a set of biochemical and functional studies confirming the GNN role in glycogen biosynthesis. Kinetic experiments showed a very low GNN K(m) (4.41 microM) for the substrate UDP-glucose. Recombinant GNN was produced in Escherichia coli and analysis by mass spectroscopy identified a peptide containing an oligosaccharide chain attached to Tyr196 residue. Site-directed mutagenesis and functional complementation of a Saccharomyces cerevisiae mutant strain confirmed the participation of this residue in the GNN self-glucosylation and indicated the Tyr198 residue as an additional, although less active, glucosylation site. The physical interaction between GNN and glycogen synthase (GSN) was analyzed by the two-hybrid assay. While the entire GSN was required for full interaction, the C-terminus in GNN was more important. Furthermore, mutation in the GNN glucosylation sites did not impair the interaction with GSN.  相似文献   

6.
Glycogenin is a self-glucosylating protein involved in the initiation of glycogen biosynthesis. Self-glucosylation leads to the formation of an oligosaccharide chain, which, when long enough, supports the action of glycogen synthase to elongate it and form a mature glycogen molecule. To identify possible regulators of glycogenin, the yeast two-hybrid strategy was employed. By using rabbit skeletal muscle glycogenin as a bait, cDNAs encoding three different proteins were isolated from the human skeletal muscle cDNA library. Two of the cDNAs encoded glycogenin and glycogen synthase, respectively, proteins known to be interactors. The third cDNA encoded a polypeptide of unknown function and was designated GNIP (glycogenin interacting protein). Northern blot analysis revealed that GNIP mRNA is highly expressed in skeletal muscle. The gene for GNIP generates at least four isoforms by alternative splicing. The largest isoform GNIP1 contains, from NH(2)- to COOH-terminal, a RING finger, a B box, a putative coiled-coil region, and a B30.2-like motif. The previously identified protein TRIM7 (tripartite motif containing protein 7) is also derived from the GNIP gene and is composed of the RING finger, B box, and coiled-coil regions. The GNIP2 and GNIP3 isoforms consist of the coiled-coil region and B30.2-like domain. Physical interaction between GNIP2 and glycogenin was confirmed by co-immunoprecipitation, and in addition GNIP2 was shown to stimulate glycogenin self-glucosylation 3-4-fold. GNIPs may represent a novel participant in the initiation of glycogen synthesis.  相似文献   

7.
Sequence alignment of pig mitochondrial NADP-dependent isocitrate dehydrogenase with eukaryotic (human, rat, and yeast) and Escherichia coli isocitrate dehydrogenases reveals that Tyr316 is completely conserved and is equivalent to the E. coli Tyr345, which interacts with the 2'-phosphate of NADP in the crystal structure [Hurley et al., Biochemistry 30 (1991) 8671-8678]. Lys321 is also completely conserved in the five isocitrate dehydrogenases. Either an arginine or lysine residue is found among the enzymes from other species at the position corresponding to the pig enzyme Arg314. While Arg323 is not conserved among all species, its proximity to the coenzyme site makes it a good candidate for investigation. The importance of these four amino acids to the function of pig mitochondrial NADP-isocitrate dehydrogenase was studied by site-directed mutagenesis. Mutants (R314Q, Y316F, Y316L, K321Q, and R323Q) were generated by a megaprimer polymerase chain reaction method. Wild-type and mutant enzymes were expressed in E. coli and purified to homogeneity. All mutant and wild-type enzymes exhibited comparable molecular weights indicative of the dimeric enzyme. Mutations do not cause an appreciable change in enzyme secondary structure as revealed by circular dichroism measurements. The kinetic parameters (V(max) and K(M) values) of K321Q and R323Q are similar to those of wild-type, indicating that Lys321 and Arg323 are not involved in enzyme function. R314Q exhibits a 10-fold increase in K(M) for NADP as compared to that of wild-type, while they have comparable V(max) values. These results suggest that Arg314 contributes to the affinity between the enzyme and NADP. The hydroxyl group of Tyr316 is not required for enzyme function since Y316F exhibits similar kinetic parameters to those of wild-type. Y316L shows a 4-fold increase in K(M) for NADP and a decrease in V(max) as compared to wild-type, suggesting that the aromatic ring of the Tyr of isocitrate dehydrogenase contributes to the affinity for coenzyme, as well as to catalysis. The K(i) for NAD of R314Q, Y316F, and Y316L is comparable to that of wild-type, indicating that the Arg314 and Tyr316 may be located near the 2'-phosphate of enzyme-bound NADP.  相似文献   

8.
T D Pfister  A J Gengenbach  S Syn  Y Lu 《Biochemistry》2001,40(49):14942-14951
The role of two tryptophans (Trp51 and Trp191) and six tyrosines (Tyr36, Tyr39, Tyr42, Tyr187, Tyr229, and Tyr236) in yeast cytochrome c peroxidase (CcP) has been probed by site-directed mutagenesis. A series of sequential mutations of these redox-active amino acid residues to the corresponding, less oxidizable residues in lignin peroxidase (LiP) resulted in an increasingly more stable compound I, with rate constants for compound I decay decreasing from 57 s(-1) for CcP(MI, W191F) to 7 s(-1) for CcP(MI, W191F,W51F,Y187F,Y229F,Y236F,Y36F,Y39E,Y42F). These results provide experimental support for the proposal that the stability of compound I depends on the number of endogenous oxidizable amino acids in proteins. The higher stability of compound I in the variant proteins also makes it possible to observe its visible absorption spectroscopic features more clearly. The effects of the mutations on oxidation of ferrocytochrome c and 2,6-dimethoxyphenol were also examined. Since the first mutation in the series involved the change of Trp191, a residue that plays a critical role in the electron transfer pathway between CcP and cyt c, the ability to oxidize cyt c was negligible for all mutant proteins. On the other hand, the W191F mutation had little effect on the proteins' ability to oxidize 2,6-dimethoxyphenol. Instead, the W51F mutation resulted in the largest increase in the k(cat)/K(M), from 2.1 x 10(2) to 5.0 x 10(3) M(-1) s(-1), yielding an efficiency that is comparable to that of manganese peroxidase (MnP). The effect in W51F mutation can be attributed to the residue's influence on the stability and thus reactivity of the ferryl oxygen of compound II, whose substrate oxidation is the rate-determining step in the reaction mechanism. Finally, out of all mutant proteins in this study, only the variant containing the Y36F, Y39E, and Y42F mutations was found to prevent covalent protein cross-links in the presence of excess hydrogen peroxide and in the absence of exogenous reductants. This finding marks the first time a CcP variant is incapable of forming protein cross-links and confirms that one of the three tyrosines must be involved in the protein cross-linking.  相似文献   

9.
Ferric myoglobin undergoes a two-electron oxidation in its reaction with H(2)O(2). One oxidation equivalent is used to oxidize Fe(III) to the Fe(IV) ferryl species, while the second is associated with a protein radical but is rapidly dissipated. The ferryl species is then slowly reduced back to the ferric state by unknown mechanisms. To clarify this process, the formation and stability of the ferryl forms of the Tyr --> Phe and Trp --> Phe mutants of recombinant sperm whale myoglobin (SwMb) were investigated. Kinetic studies showed that all the mutants react normally with H(2)O(2) to give the ferryl species. However, the rapid phase of ferryl autoreduction typical of wild-type SwMb was absent in the triple Tyr --> Phe mutant and considerably reduced in the Y103F and Y151F mutants, strongly implicating these two residues as intramolecular electron donors. Replacement of Tyr146, Trp7, or Trp14 did not significantly alter the autoreduction, indicating that these residues do not contribute to ferryl reduction despite the fact that Tyr146 is closer to the iron than Tyr151 or Tyr103. Furthermore, analysis of the fast phase of autoreduction in the dimer versus recovered monomer of the Tyr --> Phe mutant K102Q/Y103F/Y146F indicates that the Tyr151-Tyr151 cross-link is a particularly effective electron donor. The presence of an additional, slow phase of reduction in the triple Tyr --> Phe mutant indicates that alternative but normally minor electron-transfer pathways exist in SwMb. These results demonstrate that internal electron transfer is governed as much by the tyrosine pK(a) and oxidation potential as by its distance from the electron accepting iron atom.  相似文献   

10.
In a previous study, we constructed a three-dimensional (3D) structure of pentachlorophenol 4-monooxygenase (PcpB). In this study, further analyses are performed to examine the important amino acid residues in the catalytic reaction by identification of the proteins with mass spectrometry, circular dichroism (CD) and UV spectrometry, and determination of kinetic parameters. Recombinant histidine-tagged PcpB protein was produced and shown to have a similar activity to the native protein. Mutant proteins of PcpB were then produced (F85A, Y216A, Y216F, R235A, R235E, R235K, Y397A and Y397F) on the basis of the proposed 3D structure. The CD spectra of the proteins showed that there were no major changes in the structures of the mutant proteins, with the exception of R235E. Steady-state kinetics showed a 20-fold reduction in k(cat)/K(m) and a ninefold increase in K(m) for Y216F and a threefold reduction in k(cat)/K(m) and a sixfold increase in K(m) for Y397F compared to the wild type. On the other hand, the value of k(cat)/K(m) of R235K mutant was the same as that of wild type. As a result, it was confirmed that Y216 and Y397 play an important role with respect to the recognition of the substrate.  相似文献   

11.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   

12.
Site-directed mutagenesis of the 40 N-terminal residues (gamma-carboxyglutamic acid domain) of blood clotting factor VII was carried out to identify sites that improve membrane affinity. Improvements and degree of change included P10Q (2-fold), K32E (13-fold), and insertion of Tyr at position 4 (2-fold). Two other beneficial changes, D33F (2-fold) and A34E (1.5-fold), may exert their impact via influence of K32E. The modification D33E (5.2-fold) also resulted in substantial improvement. The combined mutant with highest affinity, (Y4)P10Q/K32E/D33F/A34E, showed 150-296-fold enhancement over wild-type factor VIIa, depending on the assay used. Undercarboxylation of Glu residues at positions 33 and 34 may result in an underestimate of the true contributions of gamma-carboxyglutamic acid at these positions. Except for the Tyr(4) mutant, all other beneficial mutations were located on the same surface of the protein, suggesting a possible membrane contact region. An initial screening assay was developed that provided faithful evaluation of mutants in crude mixtures. Overall, the results suggest features of membrane binding by vitamin K-dependent proteins and provide reagents that may prove useful for research and therapy.  相似文献   

13.
PLC(Bc) is a 28.5 kDa monomeric enzyme that catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine to provide a diacylglycerol and the corresponding phosphorylated headgroup. Because single replacements of Glu4, Tyr56, and Phe66 in the headgroup binding pocket led to changes in substrate specificity [Martin et al. (2000) Biochemistry 39, 3410-3415], a combinatorial library of approximately 6000 maltose binding protein-PLC(Bc) fusion protein mutants containing random permutations of these three residues was generated to identify PLC(Bc) mutants with altered specificity profiles and high catalytic activities. Members of this library were screened for hydrolytic activity toward the water soluble substrates C6PC, C6PE, and C6PS using a novel protocol that was conducted in a 96-well format and featured the in situ cleavage of the fusion protein to release the mutant PLC(Bc)s. Ten mutant enzymes that exhibited significant preferences toward C6PE or C6PS were selected and analyzed by steady-state kinetics to determine their specificity constants, k(cat)/K(M). The C6PS selective clones E4G, E4Q/Y56T/F66Y, and E4K/Y56V exhibited higher specificity constants toward C6PS than wt, whereas Y56T, F66Y, and Y56T/F66Y were C6PE selective and had comparable or higher specificity constants than wt for C6PE. The corresponding wt residues were singly reinserted back into the E4Q/Y56T/F66Y and E4K/Y56V mutants via site-directed mutagenesis, and the E4Q/F66Y mutant thus obtained exhibited a 10-fold higher specificity constant toward C6PS than wt, a value significantly higher than other PLC(Bc) mutants. On the basis of available data, an aromatic residue at position 66 appears important for significant catalytic activity toward all three substrates, especially C6PC and C6PE. The charge of residue 4 also appears to be a determinant of enzyme specificity as a negatively charged residue at this position endows the enzyme with C6PC and C6PE preference, whereas a polar neutral or positively charged residue results in C6PS selectivity. Replacing Tyr56 with Val, Ala, Thr, or Ser greatly reduces activity toward C6PC. Thus, the substrate specificity of PLC(Bc) can be modulated by varying three of the amino acid residues that constitute the headgroup binding pocket, and it is now apparent that this enzyme is not evolutionarily optimized to hydrolyze phospholipids with ethanolamine or serine headgroups.  相似文献   

14.
In the microbial dibenzothiophene desulfurization pathway, 2'-hydroxybiphenyl-2-sulfinate is converted to 2-hydroxybiphenyl and sulfinate by desulfinase (DszB) at the last step, and this reaction is rate-limiting for the whole pathway. The catalytic activity and thermostability of DszB were enhanced by the two amino acid substitutions. Based on information on the 3-D structure of DszB and a comparison of amino acid sequences between DszB and reported thermophilic and thermostable homologs (TdsB and BdsB), two amino acid residues, Tyr63 and Gln65, were selected as targets to mutate and improve DszB. These two residues were replaced by several amino acids, and the promising mutant enzymes were purified and their properties were examined. Among the wild-type and mutant enzymes, Y63F had higher catalytic activity but similar thermostability, and Q65H showed higher thermostability but less catalytic activity and affinity for the substrate. To compensate for these drawbacks, the double mutant enzyme Y63F-Q65H was purified and its properties were investigated. This mutant enzyme showed higher thermostability without loss of catalytic activity or affinity for the substrate. These superior properties of the mutant enzyme have also been confirmed with resting cells harboring the mutant gene.  相似文献   

15.
All eukaryotic sialyltransferases have in common the presence in their catalytic domain of several conserved peptide regions (sialylmotifs L, S, and VS). Functional analysis of sialylmotifs L and S previously demonstrated their involvement in the binding of donor and acceptor substrates. The region comprised between the sialylmotifs S and VS contains a stretch of four highly conserved residues, with the following consensus sequence (H/y)Y(Y/F/W/h)(E/D/q/g). (Capital letters and lowercase letters indicate a strong or low occurrence of the amino acid, respectively.) The functional importance of these residues and of the conserved residues of motif VS (HX(4)E) was assessed using as a template the human ST3Gal I. Mutational analysis showed that residues His(299) and Tyr(300) of the new motif, and His(316) of the VS motif, are essential for activity since their substitution by alanine yielded inactive enzymes. Our results suggest that the invariant Tyr residue (Tyr(300)) plays an important conformational role mainly attributable to the aromatic ring. In contrast, the mutants W301F, E302Q, and E321Q retained significant enzyme activity (25-80% of the wild type). Kinetic analyses and CDP binding assays showed that none of the mutants tested had any significant effect in nucleotide donor binding. Instead the mutant proteins were affected in their binding to the acceptor and/or demonstrated lower catalytic efficiency. Although the human ST3Gal I has four N-glycan attachment sites in its catalytic domain that are potentially glycosylated, none of them was shown to be necessary for enzyme activity. However, N-glycosylation appears to contribute to the proper folding and trafficking of the enzyme.  相似文献   

16.
Epoxide hydrolase from Agrobacterium radiobacter catalyzes the hydrolysis of epoxides to their diols via an alkyl-enzyme intermediate. The recently solved X-ray structure of the enzyme shows that two tyrosine residues (Tyr152 and Tyr215) are positioned close to the nucleophile Asp107 in such a way that they can serve as proton donor in the alkylation reaction step. The role of these tyrosines, which are conserved in other epoxide hydrolases, was studied by site-directed mutagenesis. Mutation of Tyr215 to Phe and Ala and mutation of Tyr152 to Phe resulted in mutant enzymes of which the k(cat) values were only 2-4-fold lower than for wild-type enzyme, whereas the K(m) values for the (R)-enantiomers of styrene oxide and p-nitrostyrene oxide were 3 orders of magnitude higher than the K(m) values of wild-type enzyme, showing that the alkylation half-reaction is severely affected by the mutations. Pre-steady-state analysis of the conversion of (R)-styrene oxide by the Y215F and Y215A mutants showed that the 1000-fold elevated K(m) values were mainly caused by a 15-40-fold increase in K(S) and a 20-fold reduction in the rate of alkylation. The rates of hydrolysis of the alkyl-enzyme intermediates were not significantly affected by the mutations. The double mutant Y152F+Y215F showed only a low residual activity for (R)-styrene oxide, with a k(cat)/K(m) value that was 6 orders of magnitude lower than with wild-type enzyme and 3 orders of magnitude lower than with the single tyrosine mutants. This indicates that the effects of the mutations were cumulative. The side chain of Gln134 is positioned in the active site of the X-ray structure of epoxide hydrolase. Mutation of Gln134 to Ala resulted in an active enzyme with slightly altered steady-state kinetic parameters compared to wild-type enzyme, indicating that Gln134 is not essential for catalysis and that the side chain of Gln134 mimics bound substrate. Based upon this observation, the inhibitory potential of various unsubstituted amides was tested, resulting in the identification of phenylacetamide as a competitive inhibitor with an inhibition constant of 30 microM.  相似文献   

17.
Lys212 and Tyr140 are close to the enzyme-bound isocitrate in the recently determined crystal structure of porcine NADP-specific isocitrate dehydrogenase (Ceccarelli, C., Grodsky, N. B., Ariyaratne, N., Colman, R. F., and Bahnson, B. J. (2002) J. Biol. Chem. 277, 43454-43462). We have constructed mutant enzymes in which Lys212 is replaced by Gln, Tyr, and Arg, and Tyr140 is replaced by Phe, Thr, Glu, and Lys. Wild type and mutant enzymes were each expressed in Escherichia coli and purified to homogeneity. At pH 7.4, the specific activity is decreased in K212Q, K212Y, and K212R, respectively, to 0.01-9% of wild type. The most striking change is in the pH-V(max) curves. Wild type depends on the deprotonated form of a group of pKaes 5.7, whereas this pKaes is increased to 7.4 in neutral K212Q and to 8.3 in K212Y. In contrast, the positive K212R has a pKaes of 5.9. These results indicate that (by electrostatic repulsion) a positively charged residue at position 212 lowers the pK of the nearby ionizable group in the enzyme-substrate complex. Lys212 may also stabilize the carbanion formed initially on substrate decarboxylation. The Tyr140 mutants have specific activities at pH 7.4 that are reduced to 0.2-0.5% of those of wild type, whereas their Km values for isocitrate and NADP are not increased. Most notable are the altered pH-V(max) profiles. V(max) is constant from pH 5.3 to 8 for Y140F and Y140T and increases as pH is decreased for Y140E and Y140K. These results suggest that in wild type enzyme, Tyr140 is the general acid that protonates the substrate after decarboxylation and that the carboxyl and ammonium forms of Y140E and Y140K provide partial substitutes. Relative to wild type, the Y140T enzyme is specifically activated 106-fold by exogenous addition of acetic acid and 88-fold by added phenol; and the K212Q enzyme is activated 4-fold by added ethylamine. These chemical rescue experiments support the conclusion that Tyr140 and Lys212 are required for the catalytic activity of porcine NADP-dependent isocitrate dehydrogenase.  相似文献   

18.
Rogge CE  Liu W  Wu G  Wang LH  Kulmacz RJ  Tsai AL 《Biochemistry》2004,43(6):1560-1568
Hydroperoxides induce formation of a tyrosyl radical on Tyr385 in prostaglandin H synthase (PGHS). The Tyr385 radical initiates hydrogen abstraction from arachidonic acid, thereby mechanistically connecting the peroxidase and cyclooxygenase activities. In both PGHS isoforms the tyrosyl radical undergoes a time-dependent transition from a wide doublet to a wide singlet species; pretreatment with cyclooxygenase inhibitors results in a third type of signal, a narrow singlet [Tsai, A.-L.; Kulmacz, R. J. (2000) Prost. Lipid Med. 62, 231-254]. These transitions have been interpreted as resulting from Tyr385 ring rotation, but could also be due to radical migration from Tyr385 to another tyrosine residue. PATHWAYS analysis of PGHS crystal structures identified four tyrosine residues with favorable predicted electronic coupling: residues 148, 348, 404, and 504 (ovine PGHS-1 numbering). We expressed recombinant PGHS-2 proteins containing single Tyr --> Phe mutations at the target residues, a quadruple mutant with all four tyrosines mutated, and a quintuple mutant, which also contains a Y385F mutation. All mutants bind heme and display appreciable peroxidase activity, and with the exception of the quintuple mutant, all retain cyclooxygenase activity, indicating that neither of the active sites is significantly perturbed. Reaction of the Y148F, Y348F, and Y404F mutants with EtOOH generates a wide singlet EPR signal similar to that of native PGHS-2. However, reaction of the Y504F and the quadruple mutants with peroxide yields persistent wide doublets, and the quintuple mutant is EPR silent. Nimesulide pretreatment of Y504F and the quadruple mutant results in an abnormally small amount of wide doublet signal, with no narrow singlet being formed. Therefore, the formation of an alternative tyrosine radical on Tyr504 probably accounts for the transition from a wide doublet to a wide singlet in native PGHS-2 and for formation of a narrow singlet in complexes of PGHS-2 with cyclooxygenase inhibitors.  相似文献   

19.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

20.
In the family-B DNA polymerase of bacteriophage RB69, the conserved aromatic palm-subdomain residues Tyr391 and Tyr619 interact with the last primer-template base-pair. Tyr619 interacts via a water-mediated hydrogen bond with the phosphate of the terminal primer nucleotide. The main-chain amide of Tyr391 interacts with the corresponding template nucleotide. A hydrogen bond has been postulated between Tyr391 and the hydroxyl group of Tyr567, a residue that plays a key role in base discrimination. This hydrogen bond may be crucial for forcing an infrequent Tyr567 rotamer conformation and, when the bond is removed, may influence fidelity. We investigated the roles of these residues in replication fidelity in vivo employing phage T4 rII reversion assays and an rI forward assay. Tyr391 was replaced by Phe, Met and Ala, and Tyr619 by Phe. The Y391A mutant, reported previously to decrease polymerase affinity for incoming nucleotides, was unable to support DNA replication in vivo, so we used an in vitro fidelity assay. Tyr391F/M replacements affect fidelity only slightly, implying that the bond with Tyr567 is not essential for fidelity. The Y391A enzyme has no mutator phenotype in vitro. The Y619F mutant displays a complex profile of impacts on fidelity but has almost the same mutational spectrum as the parental enzyme. The Y619F mutant displays reduced DNA binding, processivity, and exonuclease activity on single-stranded DNA and double-stranded DNA substrates. The Y619F substitution would disrupt the hydrogen bond network at the primer terminus and may affect the alignment of the 3' primer terminus at the polymerase active site, slowing chemistry and overall DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号